
 CS8651 INTERNET PROGRAMMING

 UNIT I WEBSITE BASICS, HTML 5, CSS 3, WEB 2.0 9

 Web Essentials: Clients, Servers and Communication – The Internet – Basic Internet protocols –
World wide web – HTTP Request Message – HTTP Response Message – Web Clients – Web Servers – HTML5
– Tables – Lists – Image – HTML5 control elements – Semantic elements – Drag and Drop – Audio – Video controls
- CSS3 – Inline, embedded and external style sheets – Rule cascading – Inheritance – Backgrounds – Border
Images – Colors – Shadows – Text – Transformations – Transitions – Animations.

WEB ESSENTIALS

1.1 Web Essentials:

Server:

The software that distributes the information and the machine where the information and software

reside is called the server.

• provides requested service to client

• e.g., Web server sends requested Web page

Client:

The software that resides on the remote machine, communicates with the server, fetches the

information, processes it, and then displays it on the remote machine is called the client.

• initiates contact with server (―speaks first‖)

• typically requests service from server

• Web: client implemented in browser

Web server:

Software that delivers Web pages and other documents to browsers using the HTTP protocol

Web Page:

A web page is a document or resource of information that is suitable for the World Wide Web and

can be accessed through a web browser.

Website:

A collection of pages on the World Wide Web that are accessible from the same URL and typically

residing on the same server.

URL:

Uniform Resource Locator, the unique address which identifies a resource on the Internet for

routing purposes.

1.2 Client-server paradigm:

IThe Client-Server paradigm is the most prevalent model for distributed computing protocols. It is

the basis of all distributed computing paradigms at a higher level of abstraction. It is service-oriented, and

employs a request-response protocol.

A server process, running on a server host, provides access to a service. A client process, running

on a client host, accesses the service via the server process.The interaction of the process proceeds

according to a protocol.

The primary idea of a client/server system is that you have a central repository of

information—some kind of data, often in a database—that you want to distribute on demand to some set of

people or machines.

1.3 The Internet:

• Medium for communication and interaction in inter connected network.

• Makes information constantly and instantly available to anyone with a connection.

Web Browsers:

• User agent for Web is called a browser:

o Internet Explorer

o Firefox

Web Server:

• Server for Web is called Web server:

o Apache (public domain)

o MS Internet Information Server

Protocol:

Protocols are agreed formats for transmitting data between devices.

The protocol determines:

i. The error checking required

ii. Data compression method used

iii. The way the end of a message is signalled

iv. The way the device indicates that it has received the message

1.4 Internet Protocol:

There are many protocols used by the Internet and the WWW:

o TCP/IP

o HTTP

o FTP

o Electronic mail protocols IMAP

o POP

TCP/IP

The Internet uses two main protocols (developed by Vincent Cerf and Robert Kahn)

Transmission control protocol (TCP):Controls disassembly of message into packets at the origin

reassembles at the destination

Internet protocol (IP):Specifies the addressing details for each packet Each packet is labelled with

its origin and destination.

1.5 Hypertext Transfer Protocol (HTTP)

• The hypertext transfer protocol (HTTP) was developed by Tim Berners-Lee in 1991

• HTTP was designed to transfer pages between machines

• The client (or Web browser) makes a request for a given page and the Server is responsible for

finding it and returning it to the client

• The browser connects and requests a page from the server

• The server reads the page from the file system, sends it to the client and

terminates the connection.

Electronic Mail Protocols:

• Electronic mail uses the client/server model

• The organisation has an email server devoted to handling email

o Stores and forwards email messages

• Individuals use email client software to read and send email

o (e.g. Microsoft Outlook, or Netscape Messenger)

• Simple Mail Transfer Protocol (SMTP)

o Specifies format of mail messages

• Post Office Protocol (POP) tells the email server to:

o Send mail to the user’s computer and delete it from the server

o Send mail to the user’s computer and do not delete it from the server

o Ask whether new mail has arrived.

1.6 Interactive Mail Access Protocol (IMAP)

Newer than POP, provides similar functions with additional features.

o e.g. can send specific messages to the client rather than all the messages.

A user can view email message headers and the sender’s name before

downloading the entire message.

Allows users to delete and search mailboxes held on the email server.

The disadvantage of POP: You can only access messages from one PC.

The disadvantage of IMAP :Since email is stored on the email server, there is a need for more and more

expensive (high speed) storage space.

1.7 World Wide Web: comprises software (Web server and browser) and data (Web sites).

Internet Protocol (IP) Addresses:

- Every node has a unique numeric address

- Form: 32-bit binary number

- New standard, IPv6, has 128 bits (1998)

- Organizations are assigned groups of IPs for their computers

- Domain names

- Form: host-name. domain-names

- First domain is the smallest (Google)

- Last domain specifies the type of organization (.com)

- Fully qualified domain name - the host name and all of the domain names

- DNS servers - convert fully qualified domain names to IPs

1.8 HTTP:

transfer hypertext documents.

 ith references (hyperlinks) to

other text that the reader can immediately follow, usually by a mouse HTTP is behind every request for a

web document or graph, every click of a hypertext link, and every submission of a form.

 request data, and how servers respond to these requests.

returning it to the client.

 the page from the file system and sends it to the client and then

terminates the connection

HTTP Transactions

1.9 HTTP Message:

HTTP message is the information transaction between the client and server.

Two types of HTTP Message:

1. Requests

a. Client to server

2. Responses

a. Server to client

Fields

· Request line or Response line

· General header

· Request header or Response header

· Entity header

· Entity body

.10 Request Message:

Request Line:

• A request line has three parts, separated by spaces

o a method name

o the local path of the requested resource

o the version of HTTP being used

• A typical request line is:

o GET /path/to/file/index.html HTTP/1.1

• Notes:

o GET is the most common HTTP method; it says "give me this resource". Other

methods include POST and HEAD. Method names are always uppercase

o The path is the part of the URL after the host name, also called the request URI

o The HTTP version always takes the form "HTTP/x.x", uppercase.

Request Header:

.11 Response Message:

Response Line:

• A request line has three parts, separated by spaces

o the HTTP version,

o a response status code that gives the result of the request, and

o an English reason phrase describing the status code

• Typical status lines are:

o HTTP/1.0 200 OK or

o HTTP/1.0 404 Not Found

• Notes:

o The HTTP version is in the same format as in the request line, "HTTP/x.x".

o The status code is meant to be computer-readable; the reason phrase is meant to be

human-readable, and may vary.

HTTP Request Header:

EXAMPLE

HTTP Method:

• HTTP method is supplied in the request line and specifies the operation that the client has

requested.

Some common methods:

• Options

• Get

• Head

• Post

• Put

• Move

• Delete

Two methods that are mostly used are the GET and POST:

o GET for queries that can be safely repeated

o POST for operations that may have side effects (e.g. ordering a book from an on-line store).

The GET Method

• It is used to retrieve information from a specified URI and is assumed to be a safe, repeatable

operation by browsers, caches and other HTTP aware components

• Operations have no side effects and GET requests can be re-issued.

• For example, displaying the balance of a bank account has no effect on the account and can be

safely repeated.

• Most browsers will allow a user to refresh a page that resulted from a GET, without displaying

any kind of warning

• Proxies may automatically retry GET requests if they encounter a temporary network connection

problem.

• GET requests is that they can only supply data in the form of parameters encoded in the URI

(known as a Query String) – [downside]

• Cannot be unused for uploading files or other operations that require large amounts of data to be

sent to the server.

The POST Method

• Used for operations that have side effects and cannot be safely repeated.

• For example, transferring money from one bank account to another has side effects and should

not be repeated without explicit approval by the user.

• If you try to refresh a page in Internet Explorer that resulted from a POST, it displays the

following message to warn you that there may

The POST request message has a content body that is normally used to send

parameters and data

• The IIS server returns two status codes in its response for a POST request

o The first is 100 Continue to indicate that it has successfully received the POST request

o The second is 200 OK after the request has been processed.

HTTP response status codes

• Informational (1xx)

• Successful (2xx)

• Redirection (3xx)

o 301: moved permanently

• Client error (4xx)

o 403 : forbidden

o 404: Not found

• Server error (5xx)

o 503: Service unavailable

o 505: HTTP version not supported

1.12 HTTP

 Features

• Persistent TCP Connections: Remain open for multiple requests

• Partial Document Transfers: Clients can specify start and stop positions

• Conditional Fetch: Several additional conditions

• Better content negotiation

• More flexible authentication.

 Web Browsers :

• Mosaic - NCSA (Univ. of Illinois), in early 1993 First to use a GUI, led to Explosion of Web use

Initially for X-Windows, under UNIX, but was ported to other platforms by late 1993

• Browsers are clients - always initiate, servers react (although sometimes servers require

responses)

• Most requests are for existing documents, using Hypertext Transfer Protocol

• (HTTP) But some requests are for program execution, with the output being

returned as a document.

Browser: A web browser is a software application for retrieving, presenting, and

traversing information resources on the World Wide Web.

 Web Servers:

- Provide responses to browser requests, either existing documents or dynamicallyBuilt documents.

- Browser-server connection is now maintained through more than one request- Response cycle

- All communications between browsers and servers use Hypertext Transfer Protocol

- Web servers run as background processes in the operating system.

- Monitor a communications port on the host, accepting HTTP messages when they appear

All current Web servers came from either

1. The original from CERN

2. The second one, from NCSA

- Web servers have two main directories:

1. Document root (servable documents)

2. Server root (server system software)

- Document root is accessed indirectly by clients

- Its actual location is set by the server Configuration file

- Requests are mapped to the actual location

- Virtual document trees

- Virtual hosts

- Proxy servers

- Web servers now support other Internet protocols

- Apache (open source, fast, reliable)

- IIS

- Maintained through a program with a GUI interface.

HTML 5

HTML is the main markup language for describing the structure of web pages.

HTML stands for HyperText Markup Language. HTML is the basic building block of World Wide Web.

Hypertext is text displayed on a computer or other electronic device with references to other text that the

user can immediately access, usually by a mouse click or key press.

Apart from text, hypertext may contain tables, lists, forms, images, and other presentational elements. It is

an easy-to-use and flexible format to share information over the Internet.

Markup languages use sets of markup tags to characterize text elements within a document, which gives

instructions to the web browsers on how the document should appear.

HTML was originally developed by Tim Berners-Lee in 1990. He is also known as the father of the web. In

1996, the World Wide Web Consortium (W3C) became the authority to maintain the HTML specifications.

HTML also became an international standard (ISO) in 2000. HTML5 is the latest version of HTML.

HTML5 provides a faster and more robust approach to web development.

HTML Tags and Elements

HTML is written in the form of HTML elements consisting of markup tags. These markup tags are

the fundamental characteristic of HTML. Every markup tag is composed of a keyword, surrounded

by angle brackets, such as <html>, <head>, <body>, <title>, <p>, and so on.

HTML tags normally come in pairs like <html> and </html>. The first tag in a pair is often called the

opening tag (or start tag), and the second tag is called the closing tag (or end tag).

An opening tag and a closing tag are identical, except a slash (/) after the opening angle bracket of

the closing tag, to tell the browser that the command has been completed.

Inserting Images into Web Pages

Images enhance visual appearance of the web pages by making them more interesting and colorful.

The tag is used to insert images in the HTML documents. It is an empty element and contains

attributes only. The syntax of the tag can be given with:

The following example inserts three images on the web page:

Example

Try this code »

Each image must carry at least two attributes: the src attribute, and an alt attribute.

The src attribute tells the browser where to find the image. Its value is the URL of the image file.

Whereas, the alt attribute provides an alternative text for the image, if it is unavailable or cannot be

displayed for some reason. Its value should be a meaningful substitute for the image.

HTML Tables

Creating Tables in HTML

HTML table allows you to arrange data into rows and columns. They are commonly used to display

tabular data like product listings, customer's details, financial reports, and so on.

You can create a table using the <table> element. Inside the <table> element, you can use

the <tr> elements to create rows, and to create columns inside a row you can use the <td> elements.

You can also define a cell as a header for a group of table cells using the <th> element.

The following example demonstrates the most basic structure of a table.

https://www.tutorialrepublic.com/codelab.php?topic=html&file=images

Example
<table>

 <tr>

 <th>No.</th>

 <th>Name</th>

 <th>Age</th>

 </tr>

 <tr>

 <td>1</td>

 <td>Peter Parker</td>

 <td>16</td>

 </tr>

 <tr>

 <td>2</td>

 <td>Clark Kent</td>

 <td>34</td>

 </tr>

</table>

Tables do not have any borders by default. You can use the CSS border property to add borders to

the tables. Also, table cells are sized just large enough to fit the contents by default. To add more

space around the content in the table cells you can use the CSS padding property.

Defining a Table Header, Body, and Footer

HTML provides a series of tags <thead>, <tbody>, and <tfoot> that helps you to create more

structured table, by defining header, body and footer regions, respectively.

The following example demonstrates the use of these elements.

Example

<table>

 <thead>

 <tr>

 <th>Items</th>

 <th>Expenditure</th>

 </tr>

 </thead>

 <tbody>

 <tr>

 <td>Stationary</td>

 <td>2,000</td>

 </tr>

 <tr>

 <td>Furniture</td>

 <td>10,000</td>

 </tr>

 </tbody>

 <tfoot>

 <tr>

 <th>Total</th>

 <td>12,000</td>

https://www.tutorialrepublic.com/css-reference/css-border-property.php
https://www.tutorialrepublic.com/css-reference/css-padding-property.php
https://www.tutorialrepublic.com/html-reference/html-thead-tag.php
https://www.tutorialrepublic.com/html-reference/html-tbody-tag.php
https://www.tutorialrepublic.com/html-reference/html-tfoot-tag.php

 </tr>

 </tfoot>

</table>

HTML Lists

HTML lists are used to present list of information in well formed and semantic way. There are three

different types of list in HTML and each one has a specific purpose and meaning.

 Unordered list — Used to create a list of related items, in no particular order.

 Ordered list — Used to create a list of related items, in a specific order.

 Description list — Used to create a list of terms and their descriptions.

HTML Unordered Lists

An unordered list created using the element, and each list item starts with the element.

The list items in unordered lists are marked with bullets. Here's an example:

Example

 Chocolate Cake

 Black Forest Cake

 Pineapple Cake

— The output of the above example will look something like this:

 Chocolate Cake

 Black Forest Cake

 Pineapple Cake

You can also change the bullet type in your unordered list using the CSS list-style-type property. The

following style rule changes the type of bullet from the default disc to square:

Example
ul {

 list-style-type: square;

}

Please check out the tutorial on CSS lists to learn about styling HTML lists in details.

HTML Ordered Lists

An ordered list created using the element, and each list item starts with the element.

Ordered lists are used when the order of the list's items is important.

The list items in an ordered list are marked with numbers. Here's an example:

Example

https://www.tutorialrepublic.com/css-reference/css-list-style-type-property.php
https://www.tutorialrepublic.com/css-tutorial/css-lists.php

 Fasten your seatbelt

 Starts the car's engine

 Look around and go

— The output of the above example will look something like this:

1. Fasten your seatbelt

2. Starts the car's engine

3. Look around and go

HTML5 Image

HTML Images Syntax

In HTML, images are defined with the tag.

The tag is empty, it contains attributes only, and does not have a closing tag.

The src attribute specifies the URL (web address) of the image:

EXAMPLE

<!DOCTYPE html>

<html>

<body>

<h2>HTML Image</h2>

</body>

</body>

</html>

OUTPUT

HTML Image

 HTML Form

HTML Forms are required to collect different kinds of user inputs, such as contact details like

name, email address, phone numbers, or details like credit card information, etc.

Forms contain special elements called controls like inputbox, checkboxes, radio-buttons, submit

buttons, etc. Users generally complete a form by modifying its controls e.g. entering text, selecting

items, etc. and submitting this form to a web server for further processing.

The <form> tag is used to create an HTML form. Here's a simple example of a login form:

Example

<form>

 <label>Username: <input type="text"></label>

 <label>Password: <input type="password"></label>

 <input type="submit" value="Submit">

</form>

The following section describes different types of controls that you can use in your form.

Input Element

This is the most commonly used element within HTML forms.

It allows you to specify various types of user input fields, depending on the type attribute. An input

element can be of type text field, password field, checkbox, radio button, submit button, reset

button, file select box, as well as several new input types introduced in HTML5.

The most frequently used input types are described below.

Text Fields

Text fields are one line areas that allow the user to input text.

Single-line text input controls are created using an <input> element, whose type attribute has a value

of text. Here's an example of a single-line text input used to take username:

Example

<form>

 <label for="username">Username:</label>

 <input type="text" name="username" id="username">

</form>

— The output of the above example will look something like this:

https://www.tutorialrepublic.com/html-reference/html-form-tag.php
https://www.tutorialrepublic.com/html-tutorial/html5-new-input-types.php

Password Field

Password fields are similar to text fields. The only difference is; characters in a password field are

masked, i.e. they are shown as asterisks or dots. This is to prevent someone else from reading the

password on the screen. This is also a single-line text input controls created using

an <input> element whose type attribute has a value of password.

Example
<form>

 <label for="user-pwd">Password:</label>

 <input type="password" name="user-password" id="user-pwd">

</form>

— The output of the above example will look something like this:

Radio Buttons

Radio buttons are used to let the user select exactly one option from a pre-defined set of options. It

is created using an <input> element whose type attribute has a value of radio.

Example

Try this code »

<form>

 <input type="radio" name="gender" id="male">

 <label for="male">Male</label>

 <input type="radio" name="gender" id="female">

 <label for="female">Female</label>

</form>

— The output of the above example will look something like this:

Checkboxes

Checkboxes allows the user to select one or more option from a pre-defined set of options. It is

created using an <input> element whose type attribute has a value of checkbox.

Example

<form>

 <input type="checkbox" name="sports" id="soccer">

 <label for="soccer">Soccer</label>

 <input type="checkbox" name="sports" id="cricket">

https://www.tutorialrepublic.com/codelab.php?topic=html&file=radio-button
https://www.tutorialrepublic.com/codelab.php?topic=html&file=text-field
https://www.tutorialrepublic.com/codelab.php?topic=html&file=password-field
https://www.tutorialrepublic.com/codelab.php?topic=html&file=radio-button

 <label for="cricket">Cricket</label>

 <input type="checkbox" name="sports" id="baseball">

 <label for="baseball">Baseball</label>

</form>

— The output of the above example will look something like this:

File Select box

The file fields allow a user to browse for a local file and send it as an attachment with the form data.

Web browsers such as Google Chrome and Firefox render a file select input field with a Browse

button that enables the user to navigate the local hard drive and select a file.

This is also created using an <input> element, whose type attribute value is set to file.

Example

<form>

 <label for="file-select">Upload:</label>

 <input type="file" name="upload" id="file-select">

</form>

— The output of the above example will look something like this:

Textarea

Textarea is a multiple-line text input control that allows a user to enter more than one line of text.

Multi-line text input controls are created using an <textarea> element.

Example

<form>

 <label for="address">Address:</label>

 <textarea rows="3" cols="30" name="address" id="address"></textarea>

</form>

— The output of the above example will look something like this:

Select Boxes

A select box is a dropdown list of options that allows user to select one or more option from a pull-

down list of options. Select box is created using the <select> element and <option> element.

https://www.tutorialrepublic.com/codelab.php?topic=html&file=checkbox
https://www.tutorialrepublic.com/codelab.php?topic=html&file=file-select-box
https://www.tutorialrepublic.com/codelab.php?topic=html&file=textarea

The <option> elements within the <select> element define each list item.

Example
<form>

 <label for="city">City:</label>

 <select name="city" id="city">

 <option value="sydney">Sydney</option>

 <option value="melbourne">Melbourne</option>

 <option value="cromwell">Cromwell</option>

 </select>

</form>

— The output of the above example will look something like this:

Submit and Reset Buttons

A submit button is used to send the form data to a web server. When submit button is clicked the

form data is sent to the file specified in the form's action attribute to process the submitted data.

A reset button resets all the forms control to default values. Try out the following example by typing

your name in the text field, and click on submit button to see it in action.

Example

<form action="action.php" method="post">

 <label for="first-name">First Name:</label>

 <input type="text" name="first-name" id="first-name">

 <input type="submit" value="Submit">

 <input type="reset" value="Reset">

</form>

HTML5 Colors

<!DOCTYPE html>

<html>

<body>

<h1 style="background-color:Tomato;">Tomato</h1>

<h1 style="background-color:Orange;">Orange</h1>

<h1 style="background-color:DodgerBlue;">DodgerBlue</h1>

<h1 style="background-color:MediumSeaGreen;">MediumSeaGreen</h1>

https://www.tutorialrepublic.com/codelab.php?topic=html&file=select-box
https://www.tutorialrepublic.com/codelab.php?topic=html&file=submit-and-reset-button

<h1 style="background-color:Gray;">Gray</h1>

<h1 style="background-color:SlateBlue;">SlateBlue</h1>

<h1 style="background-color:Violet;">Violet</h1>

<h1 style="background-color:LightGray;">LightGray</h1>

</body>

</html>

OUTPUT

Tomato

Orange

DodgerBlue

MediumSeaGreen

Gray

SlateBlue

Violet

LightGray

HTML5 Audio

Embedding Audio in HTML Document

Inserting audio onto a web page was not easy before, because web browsers did not have a uniform

standard for defining embedded media files like audio.

Using the HTML5 audio Element

The newly introduced HTML5 <audio> element provides a standard way to embed audio in web

pages. However, the audio element is relatively new but it works in most of the modern web

browsers.

The following example simply inserts an audio into the HTML5 document, using the browser

default set of controls, with one source defined by the src attribute.

Example

<audio controls="controls" src="media/birds.mp3">

 Your browser does not support the HTML5 Audio element.

</audio>

An audio, using the browser default set of controls, with alternative sources.

Example

<audio controls="controls">

 <source src="media/birds.mp3" type="audio/mpeg">

 <source src="media/birds.ogg" type="audio/ogg">

 Your browser does not support the HTML5 Audio element.

</audio>

HTML5 Video

Embedding Video in HTML Document

Inserting video onto a web page was not relatively easy, because web browsers did not have a

uniform standard for defining embedded media files like video.

Using the HTML5 video Element

The newly introduced HTML5 <video> element provides a standard way to embed video in web

pages. However, the video element is relatively new, but it works in most of the modern web

browsers.

The following example simply inserts a video into the HTML document, using the browser default

set of controls, with one source defined by the src attribute.

Example
<video controls="controls" src="media/shuttle.mp4">

 Your browser does not support the HTML5 Video element.

</video>

A video, using the browser default set of controls, with alternative sources.

Example
<video controls="controls">

 <source src="media/shuttle.mp4" type="video/mp4">

 <source src="media/shuttle.ogv" type="video/ogg">

 Your browser does not support the HTML5 Video element.

</video>

New HTML5 Elements

The most interesting new HTML5 elements are:

New semantic elements like <header>, <footer>, <article>, and <section>.

New attributes of form elements like number, date, time, calendar, and range.

New graphic elements: <svg> and <canvas>.

New multimedia elements: <audio> and <video>.

What are Semantic Elements?

A semantic element clearly describes its meaning to both the browser and the developer.

Examples of non-semantic elements: <div> and - Tells nothing about its content.

Examples of semantic elements: <form>, <table>, and <article> - Clearly defines its content.

New Semantic Elements in HTML5

Many web sites contain HTML code like:

<div id="nav"> <div class="header"> <div id="footer">

to indicate navigation, header, and footer.

HTML5 offers new semantic elements to define different parts of a web page:

 <article>

 <aside>

 <details>

 <figcaption>

 <figure>

 <footer>

 <header>

 <main>

 <mark>

 <nav>

 <section>

 <summary>
 <time>

HTML5 <section> Element

The <section> element defines a section in a document.

According to W3C's HTML5 documentation: "A section is a thematic grouping of content, typically with a

heading."

A home page could normally be split into sections for introduction, content, and contact information.

Example

<section>

 <h1>WWF</h1>

 <p>The World Wide Fund for Nature (WWF) is....</p>

</section>

HTML5 <article> Element

The <article> element specifies independent, self-contained content.

An article should make sense on its own, and it should be possible to read it independently from the rest of the

web site.

Examples of where an <article> element can be used:

 Forum post

 Blog post
 Newspaper article

Example

<article>

 <h1>What Does WWF Do?</h1>

 <p>WWF's mission is to stop the degradation of our planet's natural environment,

 and build a future in which humans live in harmony with nature.</p>

</article>

HTML5 <header> Element

The <header> element specifies a header for a document or section.

The <header> element should be used as a container for introductory content.

You can have several <header> elements in one document.

The following example defines a header for an article:

Example

<article>

 <header>

 <h1>What Does WWF Do?</h1>

 <p>WWF's mission:</p>

 </header>

 <p>WWF's mission is to stop the degradation of our planet's natural environment,

 and build a future in which humans live in harmony with nature.</p>

</article>

HTML5 <footer> Element

The <footer> element specifies a footer for a document or section.

A <footer> element should contain information about its containing element.

A footer typically contains the author of the document, copyright information, links to terms of use, contact

information, etc.

You may have several <footer> elements in one document.

Example

<footer>

 <p>Posted by: Hege Refsnes</p>

 <p>Contact information:

 someone@example.com.</p>

</footer>

HTML5 <figure> and <figcaption> Elements

The purpose of a figure caption is to add a visual explanation to an image.

In HTML5, an image and a caption can be grouped together in a <figure> element:

Example

<figure>

 <figcaption>Fig1. - Trulli, Puglia, Italy.</figcaption>

</figure>

OUTPUT

Places to Visit

Puglia's most famous sight is the unique conical houses (Trulli) found in the area around

Alberobello, a declared UNESCO World Heritage Site.

Fig.1 - Trulli, Puglia, Italy.

Semantic Elements in HTML5

Below is an alphabetical list of the new semantic elements in HTML5.

The links go to our complete HTML5 Reference.

Tag Description

<article> Defines an article

<aside> Defines content aside from the page content

<details> Defines additional details that the user can view or hide

<figcaption> Defines a caption for a <figure> element

https://www.w3schools.com/tags/default.asp
https://www.w3schools.com/tags/tag_article.asp
https://www.w3schools.com/tags/tag_aside.asp
https://www.w3schools.com/tags/tag_details.asp
https://www.w3schools.com/tags/tag_figcaption.asp

<figure> Specifies self-contained content, like illustrations,

diagrams, photos, code listings, etc.

<footer> Defines a footer for a document or section

<header> Specifies a header for a document or section

<main> Specifies the main content of a document

<mark> Defines marked/highlighted text

<nav> Defines navigation links

<section> Defines a section in a document

<summary> Defines a visible heading for a <details> element

<time> Defines a date/time

HTML5 Drag and Drop

Drag the W3Schools image into the rectangle.

Drag and Drop

Drag and drop is a very common feature. It is when you "grab" an object and drag it to a different location.

In HTML5, drag and drop is part of the standard: Any element can be draggable.

https://www.w3schools.com/tags/tag_figure.asp
https://www.w3schools.com/tags/tag_footer.asp
https://www.w3schools.com/tags/tag_header.asp
https://www.w3schools.com/tags/tag_main.asp
https://www.w3schools.com/tags/tag_mark.asp
https://www.w3schools.com/tags/tag_nav.asp
https://www.w3schools.com/tags/tag_section.asp
https://www.w3schools.com/tags/tag_summary.asp
https://www.w3schools.com/tags/tag_time.asp

HTML Drag and Drop Example

The example below is a simple drag and drop example:

Example

<!DOCTYPE HTML>

<html>

<head>

<script>

function allowDrop(ev) {

 ev.preventDefault();

}

function drag(ev) {

 ev.dataTransfer.setData("text", ev.target.id);

}

function drop(ev) {

 ev.preventDefault();

 var data = ev.dataTransfer.getData("text");

 ev.target.appendChild(document.getElementById(data));

}

</script>

</head>

<body>

<div id="div1" ondrop="drop(event)" ondragover="allowDrop(event)"></div>

</body>

</html>

OUTPUT

Drag the W3Schools image into the rectangle:

HTML5 <nav> Element

The <nav> element defines a set of navigation links.

Notice that NOT all links of a document should be inside a <nav> element. The <nav> element is intended only for

major block of navigation links.

Example

<nav>

 HTML |

 CSS |

 JavaScript |

 jQuery

</nav>

What Is CSS3 And Why Is It Used?

To help build highly interactive online pages, CSS3 is invariably used due to its importance in providing

greater options in the design process. When marketing products and services, web design plays a vital part; a

site should be created in a manner that will draw potential customers to explore and revisit a website more

often. Many web design firms are developing and enhancing websites through the use of CSS3 as this is a

great form of web development. This article will help define CSS3 and will point out its advantages.

Definition

The acronym CSS stands for Cascading Style Sheets which is used to augment the functionality, versatility.

and efficient performance of site content. It allows for the creation of content-rich websites that do not

require much weight or codes; this translates into more interactive graphics and animation, superior user-

interface, and significantly more organization and rapid download time.

It is used with HTML to create content structure, with CSS3 being used to format structured content. It is

responsible for font properties, colors, text alignments, graphics, background images, tables and other

components. This tool provides extra capabilities such as absolute, fixed and relative positioning of various

elements. The increasing popularity of CSS3 when used by web design firms stimulates major browsers such

as Google Chrome, Firefox, Safari, and IE9 to adopt and embrace this programming language.

Advantages

Although CSS3 is not the only web development solution, it does allow provide greater advantages for several

reasons.

 Customization – A web page can be customized and alterations created in the design by simply

changing a modular file.

 Bandwidth Requirements – It decreases server bandwidth requirements, giving rapid download time

when a site is accessed with desktop or hand-held devices, providing an improved user experience.

 Consistency – It delivers consistent and accurate positioning of navigational elements on the website.

 Appealing – It makes the site more appealing with adding videos and graphics easier.

 Viewing – It allows online videos to be viewed without the use of third-party plug-ins.

 Visibility – It delivers the opportunity to improve brand visibility by designing effective online pages.

 Cost Effective – It is cost-effective, time-saving, and supported by most browsers.

Since the introduction of CSS3, there is greater control of the presentation of content and various elements on

a website; however it is not really responsible for overall design as it only specifies the structure and content

presentation of certain web pages.

https://www.webunlimited.com/css3-used/
https://www.webunlimited.com/css3-used/
https://www.webunlimited.com/css3-used/
https://www.webunlimited.com/css3-used/

External, internal, and inline CSS styles

Cascading Style Sheets (CSS) are files with styling rules that govern how your website is presented on

screen. CSS rules can be applied to your website’s HTML files in various ways. You can use

an external stylesheet, an internal stylesheet, or an inline style. Each method has advantages that suit

particular uses.

An external stylesheet is a standalone .css file that is linked from a web page. The advantage of external

stylesheets is that it can be created once and the rules applied to multiple web pages. Should you need to

make widespread changes to your site design, you can make a single change in the stylesheet and it will be

applied to all linked pages, saving time and effort.

An internal stylesheet holds CSS rules for the page in the head section of the HTML file. The rules only

apply to that page, but you can configure CSS classes and IDs that can be used to style multiple elements in

the page code. Again, a single change to the CSS rule will apply to all tagged elements on the page.

Inline styles relate to a specific HTML tag, using a style attribute with a CSS rule to style a specific page

element. They’re useful for quick, permanent changes, but are less flexible than external and internal

stylesheets as each inline style you create must be separately edited should you decide to make a design

change.

Using external CSS stylesheets

An HTML page styled by an external CSS stylesheet must reference the .css file in the document head. Once

created, the CSS file must be uploaded to your server and linked in the HTML file with code such as:

<link href="style.css" rel="stylesheet" type="text/css">

You can name your stylesheet whatever you wish, but it should have a .css file extension.

Using internal CSS stylesheets

Rather than linking an external .css file, HTML files using an internal stylesheet include a set of rules in

their head section. CSS rules are wrapped in <style> tags, like this:

<head>

<style type="text/css">

 h1 {

 color:#fff

 margin-left: 20px;

 }

 p {

 font-family: Arial, Helvetica, Sans Serif;

 }

</style>

</head>

Using inline styles

Inline styles are applied directly to an element in your HTML code. They use the style attribute, followed by

regular CSS properties.

For example:

<h1 style="color:red;margin-left:20px;">Today’s Update</h1>

Rule Cascading

Cascade and inheritance

 Conflicting rules

CSS stands for Cascading Style Sheets, and that first word cascading is incredibly important to understand

— the way that the cascade behaves is key to understanding CSS.

At some point, we will find that the CSS have created two rules which could potentially apply to the same

element. The cascade, and the closely-related concept of specificity, are mechanisms that control which rule

applies when there is such a conflict. Which rule is styling your element may not be the one you expect, so

you need to understand how these mechanisms work.

Also significant here is the concept of inheritance, which means that some CSS properties by default inherit

values set on the current element's parent element, and some don't. This can also cause some behavior that

you might not expect.

The cascade

Stylesheets cascade — at a very simple level this means that the order of CSS rules matter; when two rules

apply that have equal specificity the one that comes last in the CSS is the one that will be used.

EXAMPLE

In the below example, we have two rules that could apply to the h1. The h1 ends up being colored blue —

these rules have an identical selector and therefore carry the same specificity, so the last one in the source

order wins.

h1 {

 color: red;

}

h1 {

 color: blue;

}

 <h1>This is my heading.</h1>

 OUTPUT

This is my heading.

Specificity

Specificity is how the browser decides which rule applies if multiple rules have different selectors, but could

still apply to the same element. It is basically a measure of how specific a selector's selection will be:

 An element selector is less specific — it will select all elements of that type that appear on a page — so will

get a lower score.

 A class selector is more specific — it will select only the elements on a page that have a specific class attribute

value — so will get a higher score.

Example time! Below we again have two rules that could apply to the h1. The below h1 ends up being colored

red — the class selector gives its rule a higher specificity, and so it will be applied even though the rule with

the element selector appears further down in the source order.

 EXAMPLE

main-heading {

 color: red;

}

 h1 {

 color: blue;

}

. <h1 class="main-heading">This is my heading.</h1>

OUTPUT

This is my heading.

Inheritance

Inheritance also needs to be understood in this context — some CSS property values set on parent elements

are inherited by their child elements, and some aren't.

For example, if you set a color and font-family on an element, every element inside it will also be styled with

that color and font, unless you've applied different color and font values directly to them.

Some properties do not inherit — for example if you set a width of 50% on an element, all of its descendants

do not get a width of 50% of their parent's width. If this was the case, CSS would be very frustrating to use!

body {

 color: blue;

}

span {

 color: black;

}

<p>As the body has been set to have a color of blue this is inherited through the

descendants.</p>

<p>We can change the color by targetting the element with a selector,

 such as this

span.</p>

OUTPUT

As the body has been set to have a color of blue this is inherited through

the descendants.

We can change the color by targetting the element with a selector, such as

this span.

https://developer.mozilla.org/en-US/docs/Web/CSS/width

CSS3 Shadow Effects

With CSS3 you can create two types of shadows: text-shadow (adds shadow to text) and box-shadow (adds

shadow to other elements).

CSS3 Text Shadow

The text-shadow property can take up to four values:

 the horizontal shadow

 the vertical shadow

 the blur effect

 the color

Examples:

 Normal text shadow

 h1 {

 text-shadow: 2px 2px 5px crimson;

}

 Glowing text effect

 h1 {

 text-shadow: 0 0 4px #00FF9C;

}

CSS3 Box Shadow

The box-shadow property can take up to six values:

 (optional) the inset keyword (changes the shadow to one inside the frame)

 the horizontal shadow

 the vertical shadow

 the blur effect

 the spreading

 the color

Examples:

.first-div {

 box-shadow: 1px 1px 5px 3px grey;

}

CSS Animations

CSS allows animation of HTML elements without using JavaScript or Flash!

What are CSS Animations?

An animation lets an element gradually change from one style to another.

You can change as many CSS properties you want, as many times you want.

To use CSS animation, you must first specify some keyframes for the animation.

Keyframes hold what styles the element will have at certain times.

The @keyframes Rule

When you specify CSS styles inside the @keyframes rule, the animation will gradually change from the

current style to the new style at certain times.

To get an animation to work, you must bind the animation to an element.

The following example binds the "example" animation to the <div> element. The animation will last for 4

seconds, and it will gradually change the background-color of the <div> element from "red" to "yellow":

Example

/* The animation code */

@keyframes example {

 from {background-color: red;}

 to {background-color: yellow;}

}

/* The element to apply the animation to */

div {

 width: 100px;

 height: 100px;

 background-color: red;

 animation-name: example;

 animation-duration: 4s;

}

Note: The animation-duration property defines how long time an animation should take to complete. If

the animation-duration property is not specified, no animation will occur, because the default value is 0s (0

seconds).

In the example above we have specified when the style will change by using the keywords "from" and "to"

(which represents 0% (start) and 100% (complete)).

It is also possible to use percent. By using percent, you can add as many style changes as you like.

The following example will change the background-color of the <div> element when the animation is 25%

complete, 50% complete, and again when the animation is 100% complete:

Example

/* The animation code */

@keyframes example {

 0% {background-color: red;}

 25% {background-color: yellow;}

 50% {background-color: blue;}

 100% {background-color: green;}

}

/* The element to apply the animation to */

div {

 width: 100px;

 height: 100px;

 background-color: red;

 animation-name: example;

 animation-duration: 4s;

}

CSS Animation Properties

The following table lists the @keyframes rule and all the CSS animation properties:

Property Description

@keyframes Specifies the animation code

animation A shorthand property for setting all the animation properties

https://www.w3schools.com/cssref/css3_pr_animation-keyframes.asp
https://www.w3schools.com/cssref/css3_pr_animation.asp

animation-delay Specifies a delay for the start of an animation

animation-direction Specifies whether an animation should be played forwards,

backwards or in alternate cycles

animation-duration Specifies how long time an animation should take to complete

one cycle

animation-fill-mode Specifies a style for the element when the animation is not

playing (before it starts, after it ends, or both)

animation-iteration-count Specifies the number of times an animation should be played

animation-name Specifies the name of the @keyframes animation

animation-play-state Specifies whether the animation is running or paused

animation-timing-function Specifies the speed curve of the animation

CSS Transitions

CSS Transitions is a module of CSS that lets you create gradual transitions between the values of specific CSS

properties. The behavior of these transitions can be controlled by specifying their timing function, duration, and other

attributes.

Properties

 transition
 transition-delay
 transition-duration
 transition-property
 transition-timing-function

The transition CSS property is a shorthand property for transition-property, transition-duration, transition-timing-function,

and transition-delay.

CSS transition Property

Example

Hover over a <div> element to gradually change the width from 100px to 300px:

div {

 width: 100px;

 transition: width 2s;

}

div:hover {

 width: 300px;

}

OUTPUT

https://www.w3schools.com/cssref/css3_pr_animation-delay.asp
https://www.w3schools.com/cssref/css3_pr_animation-direction.asp
https://www.w3schools.com/cssref/css3_pr_animation-duration.asp
https://www.w3schools.com/cssref/css3_pr_animation-fill-mode.asp
https://www.w3schools.com/cssref/css3_pr_animation-iteration-count.asp
https://www.w3schools.com/cssref/css3_pr_animation-name.asp
https://www.w3schools.com/cssref/css3_pr_animation-play-state.asp
https://www.w3schools.com/cssref/css3_pr_animation-timing-function.asp
https://developer.mozilla.org/en-US/docs/Web/CSS/transition
https://developer.mozilla.org/en-US/docs/Web/CSS/transition-delay
https://developer.mozilla.org/en-US/docs/Web/CSS/transition-duration
https://developer.mozilla.org/en-US/docs/Web/CSS/transition-property
https://developer.mozilla.org/en-US/docs/Web/CSS/transition-timing-function
https://developer.mozilla.org/en/CSS
https://developer.mozilla.org/en-US/docs/Web/CSS/Shorthand_properties
https://developer.mozilla.org/en-US/docs/Web/CSS/transition-property
https://developer.mozilla.org/en-US/docs/Web/CSS/transition-duration
https://developer.mozilla.org/en-US/docs/Web/CSS/transition-timing-function
https://developer.mozilla.org/en-US/docs/Web/CSS/transition-delay

.

Definition and Usage

The transition property is a shorthand property for:

 transition-property

 transition-duration

 transition-timing-function

Property Values

Value Description

transition-property Specifies the name of the CSS property the transition effect is for

transition-duration Specifies how many seconds or milliseconds the transition effect

takes to complete

transition-timing-

function

Specifies the speed curve of the transition effect

transition-delay Defines when the transition effect will start

initial Sets this property to its default value. Read about initial

inherit Inherits this property from its parent element. Read about inherit

Example

When an <input type="text"> gets focus, gradually change the width from

100px to 250px:

input[type=text] {

 width: 100px;

 transition: width .35s ease-in-out;

}

input[type=text]:focus {

https://www.w3schools.com/cssref/css3_pr_transition-property.asp
https://www.w3schools.com/cssref/css3_pr_transition-duration.asp
https://www.w3schools.com/cssref/css3_pr_transition-timing-function.asp
https://www.w3schools.com/cssref/css3_pr_transition-property.asp
https://www.w3schools.com/cssref/css3_pr_transition-duration.asp
https://www.w3schools.com/cssref/css3_pr_transition-timing-function.asp
https://www.w3schools.com/cssref/css3_pr_transition-timing-function.asp
https://www.w3schools.com/cssref/css3_pr_transition-delay.asp
https://www.w3schools.com/cssref/css_initial.asp
https://www.w3schools.com/cssref/css_inherit.asp

 width: 250px;

}

OUTPUT

The width Property

Set the width of the input field to 100 pixels. However, when the input field gets focus, make it

250 pixels wide:

Search:

CSS background-color

The background-color property specifies the background color of an element.

Example

The background color of a page is set like this:

body {

 background-color: lightblue;

}

CSS background-image

The background-image property specifies an image to use as the background of an element.

By default, the image is repeated so it covers the entire element.

Example

The background image for a page can be set like this:

body {

 background-image: url("paper.gif");

}

CSS background - Shorthand property

To shorten the code, it is also possible to specify all the background properties in one

single property. This is called a shorthand property.

The shorthand property for background is background.

Example

Use the shorthand property to set all the background properties in one declaration:

body {

 background: #ffffff url("img_tree.png") no-repeat right top;
}

CSS Border - Shorthand Property

As you can see from the examples above, there are many properties to consider when

dealing with borders.

To shorten the code, it is also possible to specify all the individual border properties in
one property.

The border property is a shorthand property for the following individual border properties:

 border-width

 border-style (required)
 border-color

Example

p {

 border: 5px solid red;
}

Result:

Some text

 UNIT II - CLIENT SIDE PROGRAMMING

Java Script: An introduction to JavaScript – JavaScript DOM Model – Date and

Objects – Regular Expressions – Exception Handling – Validation – Built-in objects –

Event Handling – DHTML with JavaScript – JSON introduction – Syntax – Function

Files – Http Request – SQL.

PART - A

Q.No Questions

1. Evaluate various Java Script Object models.

2. Define DOM.

3.

Give any four methods of Date objects.

JavaScript Get Date Methods

These methods can be used for getting information from a date object:

Method Description

getFullYear() Get the year as a four digit number (yyyy)

getMonth() Get the month as a number (0-11)

getDate() Get the day as a number (1-31)

getHours() Get the hour (0-23)

getMinutes() Get the minute (0-59)

getSeconds() Get the second (0-59)

getMilliseconds() Get the millisecond (0-999)

getTime() Get the time (milliseconds since January 1, 1970)

getDay() Get the weekday as a number (0-6)

Date.now() Get the time. ECMAScript 5.

JavaScript Set Date Methods

Set Date methods let you set date values (years, months, days, hours, minutes, seconds,

milliseconds) for a Date Object.

Set Date Methods

Set Date methods are used for setting a part of a date:

Method Description

setDate() Set the day as a number (1-31)

setFullYear() Set the year (optionally month and day)

setHours() Set the hour (0-23)

setMilliseconds() Set the milliseconds (0-999)

setMinutes() Set the minutes (0-59)

setMonth() Set the month (0-11)

setSeconds() Set the seconds (0-59)

setTime() Set the time (milliseconds since January 1,

1970)

4.

Write the JavaScript methods to retrieve the data and time based on the

computer locale.

<script>

// Use of Date.now() function

var d = Date(Date.now());

// Converting the number of millisecond in date string

a = d.toString()

// Printing the current date

document.write("The current date is: " + a)

</script>

OUTPUT

The current date is: Thu Jan 09 2020 20:35:39 GMT+0530 (India Standard Time)

5.

Can you list the different methods defined in document and window object

of JavaScript.

Window Object

The window object represents an open window in a browser.

Window Object Methods

Method Description

alert() Displays an alert box with a message and an
OK button

atob() Decodes a base-64 encoded string

blur() Removes focus from the current window

btoa() Encodes a string in base-64

clearInterval() Clears a timer set with setInterval()

clearTimeout() Clears a timer set with setTimeout()

close() Closes the current window

confirm() Displays a dialog box with a message and an
OK and a Cancel button

focus() Sets focus to the current window

getComputedStyle() Gets the current computed CSS styles applied

to an element

getSelection() Returns a Selection object representing the

range of text selected by the user

matchMedia() Returns a MediaQueryList object representing
the specified CSS media query string

moveBy() Moves a window relative to its current
position

moveTo() Moves a window to the specified position

open() Opens a new browser window

print() Prints the content of the current window

prompt() Displays a dialog box that prompts the visitor
for input

https://www.w3schools.com/jsref/met_win_alert.asp
https://www.w3schools.com/jsref/met_win_atob.asp
https://www.w3schools.com/jsref/met_win_blur.asp
https://www.w3schools.com/jsref/met_win_btoa.asp
https://www.w3schools.com/jsref/met_win_clearinterval.asp
https://www.w3schools.com/jsref/met_win_cleartimeout.asp
https://www.w3schools.com/jsref/met_win_close.asp
https://www.w3schools.com/jsref/met_win_confirm.asp
https://www.w3schools.com/jsref/met_win_focus.asp
https://www.w3schools.com/jsref/jsref_getcomputedstyle.asp
https://www.w3schools.com/jsref/met_win_matchmedia.asp
https://www.w3schools.com/jsref/met_win_moveby.asp
https://www.w3schools.com/jsref/met_win_moveto.asp
https://www.w3schools.com/jsref/met_win_open.asp
https://www.w3schools.com/jsref/met_win_print.asp
https://www.w3schools.com/jsref/met_win_prompt.asp

requestAnimationFrame() Requests the browser to call a function to

update an animation before the next repaint

resizeBy() Resizes the window by the specified pixels

resizeTo() Resizes the window to the specified width and

height

scroll() Deprecated. This method has been replaced

by the scrollTo() method.

scrollBy() Scrolls the document by the specified number

of pixels

scrollTo() Scrolls the document to the specified

coordinates

setInterval() Calls a function or evaluates an expression at

specified intervals (in milliseconds)

setTimeout() Calls a function or evaluates an expression
after a specified number of milliseconds

stop() Stops the window from loading

Document Object Model

1. Document Object

2. Properties of document object

3. Methods of document object

4. Example of document object

 The document object represents the whole html document.

 When html document is loaded in the browser, it becomes a document object.

 It is the root element that represents the html document. It has properties and

methods.

 By the help of document object, we can add dynamic content to our web page

 According to W3C - "The W3C Document Object Model (DOM) is a platform and

language-neutral interface that allows programs and scripts to dynamically access and

update the content, structure, and style of a document."

https://www.w3schools.com/jsref/met_win_resizeby.asp
https://www.w3schools.com/jsref/met_win_resizeto.asp
https://www.w3schools.com/jsref/met_win_scrollto.asp
https://www.w3schools.com/jsref/met_win_scrollby.asp
https://www.w3schools.com/jsref/met_win_scrollto.asp
https://www.w3schools.com/jsref/met_win_setinterval.asp
https://www.w3schools.com/jsref/met_win_settimeout.asp
https://www.w3schools.com/jsref/met_win_stop.asp
https://www.javatpoint.com/document-object-model
https://www.javatpoint.com/document-object-model
https://www.javatpoint.com/document-object-model
https://www.javatpoint.com/document-object-model

Properties of document object

Let's see the properties of document object that can be accessed and modified by the

document object.

Methods of document object

We can access and change the contents of document by its methods.

The important methods of document object are as follows:

Method Description

write("string") writes the given string on the doucment.

writeln("string") writes the given string on the doucment

with newline character at the end.

getElementById() returns the element having the given id

value.

getElementsByName() returns all the elements having the

given name value.

getElementsByTagName() returns all the elements having the

given tag name.

getElementsByClassName() returns all the elements having the

given class name.

6.

Name which parser is best in parsing in large size documents. Why?

7.

Summarize benefits of using JavaScript code in an HTML document.

Advantages of JavaScript

The merits of using JavaScript are −

 Less server interaction − You can validate user input before sending the page off to the server. This

saves server traffic, which means less load on your server.

 Immediate feedback to the visitors − They don't have to wait for a page reload to see if they have

forgotten to enter something.

 Increased interactivity − You can create interfaces that react when the user hovers over them with

a mouse or activates them via the keyboard.

 Richer interfaces − You can use JavaScript to include such items as drag-and-drop components and

sliders to give a Rich Interface to your site visitors.

8.

Predict the need for client and server side scripting.

Client-side scripting (embedded scripts) is code that exists inside the client’s

HTML page. This code will be processed on the client machine and the HTML

page will NOT perform a PostBack to the web-server. Traditionally, client-side

scripting is used for page navigation, data validation and formatting. The language

used in this scripting is JavaScript. JavaScript is compatible and is able to run on

any internet browser.

The two main benefits of client-side scripting are:

1. The user’s actions will result in an immediate response because they don’t require

a trip to the server.

2. Fewer resources are used and needed on the web-server.

Server-side scripting is a technique used in web development which involves
employing scripts on a web server which produce a response customized for each user's
(client's) request to the website. The alternative is for the web server itself to deliver a static
web page.

The client-side script executes the code to the client side which is visible to the users while
a server-side script is executed in the server end which users cannot see.

9. Interpret how exceptions are handled in Java script.

The try...catch...finally Statement

The latest versions of JavaScript added exception handling capabilities. JavaScript implements

the try...catch...finally construct as well as the throw operator to handle exceptions.

You can catch programmer-generated and runtime exceptions, but you

cannot catch JavaScript syntax errors.

Here is the try...catch...finally block syntax –

<script type = "text/javascript">

 <!--

 try {

 // Code to run

 [break;]

 }

 catch (e) {

 // Code to run if an exception occurs

 [break;]

 }

 [finally {

 // Code that is always executed regardless of

 // an exception occurring

 }]

 //-->

</script>

The try block must be followed by either exactly one catch block or one finally block

 (or one of both). When an exception occurs in the try block, the exception is placed in e and

the

 catch block is executed. The optional finally block executes unconditionally after try/catch.

Examples

Here is an example where we are trying to call a non-existing function which in turn is raising

an exception. Let us see how it behaves without try...catch−

<html>

 <head>

 <script type = "text/javascript">

 <!--

 function myFunc() {

 var a = 100;

 alert("Value of variable a is : " + a);

 }

 //-->

 </script>

 </head>

 <body>

 <p>Click the following to see the result:</p>

 <form>

 <input type = "button" value = "Click Me" onclick = "myFunc();" />

 </form>

 </body>

</html>

10.

Define JavaScript statement with an example.

JavaScript Statements

Example

var x, y, z; // Statement 1

x = 5; // Statement 2

y = 6; // Statement 3
z = x + y; // Statement 4

JavaScript statements are composed of:
Values, Operators, Expressions, Keywords, and Comments.

This statement tells the browser to write "Hello Dolly." inside an HTML
element with id="demo":

<!DOCTYPE html>
<html>

<body>
<h2>JavaScript Statements</h2>

<p>In HTML, JavaScript statements are executed by the browser.</p>

<p id="demo"></p>

<script>

document.getElementById("demo").innerHTML = "Hello Dolly.";

</script>

</body>

</html>

OUTPUT

JavaScript Statements

In HTML, JavaScript statements are executed by the browser.

Hello Dolly.

11.

Point out any two techniques of event programming.

What is an Event ?

JavaScript's interaction with HTML is handled through events that occur when the user or the

browser manipulates a page.

When the page loads, it is called an event. When the user clicks a button, that click too is an

event. Other examples include events like pressing any key, closing a window, resizing a

window, etc.

Developers can use these events to execute JavaScript coded responses, which cause buttons

to close windows, messages to be displayed to users, data to be validated, and virtually any

other type of response imaginable.

Events are a part of the Document Object Model (DOM) Level 3 and every HTML element

contains a set of events which can trigger JavaScript Code.

Please go through this small tutorial for a better understanding HTML Event Reference. Here

we will see a few examples to understand a relation between Event and JavaScript −

onclick Event Type

This is the most frequently used event type which occurs when a user clicks the left button of

his mouse. You can put your validation, warning etc., against this event type.

Example

Try the following example.

<html>

 <head>

 <script type = "text/javascript">

 <!--

 function sayHello() {

 alert("Hello World")

 }

 //-->

 </script>

 </head>

https://www.tutorialspoint.com/html/html_events_ref.htm

 <body>

 <p>Click the following button and see result</p>

 <form>

 <input type = "button" onclick = "sayHello()" value = "Say Hello" />

 </form>

 </body>

</html>

Example 2

<!doctype html>

<html>

<head>

 <script>

 function hov() {

 var e = document.getElementById('hover');

 e.style.display = 'none';

 }

 </script>

</head>

<body>

 <div id="hover" onmouseover="hov()"

 style="background-color:green;height:200px;width:200px;">

 </div>

</body>

</html>

OUTPUT
Before mouse is taken over green square-

Green square gets disappear after mouse is taken over it.

12.

What is DHTML?

DHTML

DHTML stands for Dynamic HTML, it is totally different from HTML. The DHTML make

use of Dynamic object model to make changes in settings and also in properties and methods.

DHTML allows different scripting languages in a web page to change their variables, which

enhance the effects, looks and many others functions after the whole page have been fully

loaded or under a view process, or otherwise static HTML pages on the same.

DHTML is used to create interactive and animated web pages that are generated in real-time,

also known as dynamic web pages so that when such a page is accessed, the code within the

page is analyzed on the web server and the resulting HTML is sent to the client’s web

browser.

13.

Differentiate HTML and DHTML

Some differences between HTML and DHTML:

 HTML is a mark-up language, while DHTML is a collection of technology.

 DHTML creates dynamic web pages, whereas HTML creates static web pages.

 DHTML allows including small animations and dynamic menus in Web pages.

 DHML used events, methods, properties to insulate dynamism in HTML Pages.

 DHML is basically using JavaScript and style sheets in an HTML page.

 HTML sites will be slow upon client-side technologies, while DHTML sites will be fast

enough upon client-side technologies.

 HTML creates a plain page without any styles and Scripts called as HTML. Whereas,

DHTML creates a page with HTML, CSS, DOM and Scripts called as DHTML.

 HTML cannot have any server side code but DHTML may contain server side code.

 In HTML, there is no need for database connectivity, but DHTML may require

connecting to a database as it interacts with user.

 HTML files are stored with .htm or .html extension, while DHTML files are stored with

.dhtm extension.

 HTML does not require any processing from browser, while DHTML requires

processing from browser which changes its look and feel.

14.

Point out the key features of DHTML.

Key Features: Following are the some major key features of DHTML:

 Tags and their properties can be changed using DHTML.

 It is used for real-time positioning.

 Dynamic fonts can be generated using DHTML.

 It is also used for data binding.

 It makes a webpage dynamic and be used to create animations, games, applications along

with providing new ways of navigating through websites.

 The functionality of a webpage is enhanced due to the usage of low-bandwidth effect by

DHTML.

 DHTML also facilitates the use of methods, events, properties, and codes.

15.

Classify the data types in JSON
JSON (JavaScript Object Notation) is a lightweight data-interchange format. It is easy for humans to

read and write. ... JSON is built on two structures: A collection of name/value pairs. In various

languages, this is realized as an object, record, struct, dictionary, hash table, keyed list, or associative

array.

JSON Data Types. At the granular level, JSON consist of 6 data types. First four data types (string,

number, boolean and null) can be referred as simple data types. Other two data types (object and

array) can be referred as complex data types.

16.

How to convert text into a JavaScript object using JSON?

Converting JSON text to JavaScript Object

JSON (JavaScript Object Notation) is a lightweight data-interchange format. As its
name suggests, JSON is derived from the JavaScript programming language, but it’s
available for use by many languages including Python, Ruby, PHP, and Java and
hence, it can be said as language-independent. For humans, it is easy to read and
write and for machines, it is easy to parse and generate. It is very useful for storing
and exchanging data.

A JSON object is a key-value data format that is typically rendered in curly braces.
JSON object consist of curly braces ({ }) at the either ends and have key-value pairs
inside the braces. Each key-value pair inside braces are separated by comma (,).
JSON object looks something like this :
{

 "key":"value",

 "key":"value",

 "key":"value",

}

Example for a JSON object :

{

 "rollno":101",

 "name":"Mayank",

 "age":20,

}

Conversion of JSON text to Javascript Object

JSON text/object can be converted into Javascript object using the
function JSON.parse().

var object1 = JSON.parse('{"rollno":101, "name":"Mayank", "age":20}');

For getting the value of any key from a Javascript object, we can use the values
as: object1.rollno

17. Evaluate the syntax to create arrays in JSON.

JavaScript | JSON Arrays

The JSON Arrays is similar to JavaScript Arrays.

Syntax of Arrays in JSON Objects:
// JSON Arrays Syntax

{
 "name":"Peter parker",
 "heroName": "Spiderman",
 "friends" : ["Deadpool", "Hulk", "Wolverine"]
}
Accessing Array Values:
The Array values can be accessed using the index of each element in an Array.

EXAMPLE

<script>

var myObj, i, x = "";

myObj = {

 "name":"John",

 "age":30,

 "cars":["Ford", "BMW", "Fiat"]

};

for (i in myObj.cars) {

 x += myObj.cars[i] + "
";

}

document.getElementById("demo").innerHTML = x;

</script>

OUTPUT

Looping through an array using a for in loop:

Ford

BMW

Fiat

18.

How will you make a request with JSON?

What is a JSON request?
JavaScript Object Notation (JSON) is a standard text-based format for representing
structured data based on JavaScript object syntax. It is commonly used for
transmitting data in web applications (e.g., sending some data from the server to the
client, so it can be displayed on a web page, or vice versa).

jQuery getJSON() Method

The jQuery getJSON() method sends asynchronous http GET request to the server and retrieves

the data in JSON format by setting accepts header to application/json, text/javascript. This is

same as get() method, the only difference is that getJSON() method specifically retrieves JSON

data whereas get() method retrieves any type of data. It is like shortcut method to retrieve JSON

data. Syntax:

$.getJSON(url,[data],[callback]);

Parameter Description:

 url: request url from which you want to retrieve the data

 data: JSON data to be sent to the server as a query string

 callback: function to be executed when request succeeds

The following example shows how to retrieve JSON data using getJSON() method.

Example: jQuery getJSON() Method

$.getJSON('/jquery/getjsondata', {name:'Steve'}, function (data, textStatus, jqXHR){

 $('p').append(data.firstName);

});

<p></p>

OUTPUT

jQuery get() method demo

Steve

19.

Define DDL and DML
DDL(Data Definition Language) : DDL or Data Definition Language actually consists of the

SQL commands that can be used to define the database schema. It simply deals with

descriptions of the database schema and is used to create and modify the structure of

database objects in the database.

Examples of DDL commands:
 CREATE – is used to create the database or its objects (like table, index, function,

views, store procedure and triggers).
 DROP – is used to delete objects from the database.
 ALTER-is used to alter the structure of the database.
 TRUNCATE–is used to remove all records from a table, including all spaces allocated

for the records are removed.
 COMMENT –is used to add comments to the data dictionary.
 RENAME –is used to rename an object existing in the database

20.

Write SQL query to find minimum and maximum marks in a table.

DML(Data Manipulation Language) : The SQL commands that deals with the manipulation

of data present in the database belong to DML or Data Manipulation Language and this

includes most of the SQL statements.

https://www.geeksforgeeks.org/sql-create/
https://www.geeksforgeeks.org/sql-drop-truncate/
https://www.geeksforgeeks.org/sql-alter-add-drop-modify/
https://www.geeksforgeeks.org/sql-drop-truncate/
https://www.geeksforgeeks.org/sql-comments/
https://www.geeksforgeeks.org/sql-alter-rename/

Examples of DML:
 INSERT – is used to insert data into a table.
 UPDATE – is used to update existing data within a table.
 DELETE – is used to delete records from a database table.

PART - B

Q.No Questions

1.

i) Examine variables and data types in JavaScript.

Variables in JavaScript:
Variables in JavaScript are containers which hold reusable data. It is the basic unit of
storage in a program.

 The value stored in a variable can be changed during program execution.
 A variable is only a name given to a memory location, all the operations done on

the variable effects that memory location.
 In JavaScript, all the variables must be declared before they can be used.

JavaScript variables are containers for storing data values.

In this example, x, y, and z, are variables:

Examples

var x = 5;

var y = 6;

var z = x + y;

var price1 = 5;

var price2 = 6;
var total = price1 + price2;

Declaring (Creating) JavaScript Variables

Creating a variable in JavaScript is called "declaring" a variable.

You declare a JavaScript variable with the var keyword:

var carName;

After the declaration, the variable has no value (technically it has the value of undefined).

To assign a value to the variable, use the equal sign:

carName = "Volvo";

You can also assign a value to the variable when you declare it:

var carName = "Volvo";

https://www.geeksforgeeks.org/sql-insert-statement/
https://www.geeksforgeeks.org/sql-update-statement/
https://www.geeksforgeeks.org/sql-delete-statement/

EXAMPLE

<script>

var carName = "Volvo";

document.getElementById("demo").innerHTML

= carName;

</script>

OUTPUT

JavaScript Variables

Create a variable, assign a value to it,

and display it:

Volvo

ii) Give various Operators in JavaScript.

JavaScript Operators

JavaScript Arithmetic Operators

Arithmetic operators are used to perform arithmetic on numbers:

Operator Description Example

+ Addition var x = 5;

var y = 2;

var z = x + y;

- Subtraction var x = 5;

var y = 2;

var z = x - y;

* Multiplication var x = 5;

var y = 2;

var z = x * y;

** Exponentiation

(ES2016)

/ Division

% Modulus (Division

Remainder)

++ Increment

-- Decrement

JavaScript Assignment Operators

Assignment operators assign values to JavaScript variables.

Operator Example Same As

https://www.w3schools.com/js/js_es6.asp

= x = y x = y

+= x += y x = x + y

-= x -= y x = x - y

*= x *= y x = x * y

/= x /= y x = x / y

%= x %= y x = x % y

**= x **= y x = x ** y

The addition assignment operator (+=) adds a value to a variable.

Assignment

var x = 10;

x += 5;

JavaScript String Operators

The + operator can also be used to add

(concatenate) strings.

Example

var txt1 = "John";

var txt2 = "Doe";

var txt3 = txt1 + " " + txt2;

The result of txt3 will be:

John Doe

The += assignment operator can also be used

to add (concatenate) strings:

Example

var txt1 = "What a very ";

txt1 += "nice day";

The result of txt1 will be:

What a very nice day

When used on strings, the + operator is called

the concatenation operator.

JavaScript Comparison Operators

Operator Description

== equal to

=== equal value and equal type

!= not equal

!== not equal value or not equal type

> greater than

< less than

>= greater than or equal to

<= less than or equal to

? ternary operator

JavaScript Logical Operators

Operator Description

&& logical and

|| logical or

! logical not

JavaScript Type Operators

Operator Description

typeof Returns the type of a variable

instanceof Returns true if an object is an instance of

an object type

Type operators are fully described in the JS Type Conversion chapter.

JavaScript Bitwise Operators

Bit operators work on 32 bits numbers.

Any numeric operand in the operation is converted into a 32 bit number. The result is converted

back to a JavaScript number.

Operator Description Example Same as Result Decimal

& AND 5 & 1 0101 & 0001 0001 1

| OR 5 | 1 0101 | 0001 0101 5

~ NOT ~ 5 ~0101 1010 10

^ XOR 5 ^ 1 0101 ^ 0001 0100 4

<< Zero fill left shift 5 << 1 0101 << 1 1010 10

>> Signed right shift 5 >> 1 0101 >> 1 0010 2

https://www.w3schools.com/js/js_type_conversion.asp

>>> Zero fill right

shift

5 >>> 1 0101 >>> 1 0010 2

The examples above uses 4 bits unsigned examples. But JavaScript uses 32-bit signed numbers.

Because of this, in JavaScript, ~ 5 will not return 10. It will return -6.

~00000000000000000000000000000101 will return 11111111111111111111111111111010

2.

(i) Summarize about DOM Model.

What is the DOM?

The DOM is a W3C (World Wide Web Consortium) standard.

The DOM defines a standard for accessing documents:

"The W3C Document Object Model (DOM) is a platform and language-neutral interface that

allows programs and scripts to dynamically access and update the content, structure, and style of

a document."

The W3C DOM standard is separated into 3 different parts:

 Core DOM - standard model for all document types

 XML DOM - standard model for XML documents
 HTML DOM - standard model for HTML documents

JavaScript HTML DOM

With the HTML DOM, JavaScript can access and change all the elements of an HTML

document.

The HTML DOM (Document Object Model)

When a web page is loaded, the browser creates a Document Object Model of the page.

The HTML DOM model is constructed as a tree of Objects:

The HTML DOM Tree of Objects

With the object model, JavaScript gets all the power it needs to create dynamic HTML:

 JavaScript can change all the HTML elements in the page

 JavaScript can change all the HTML attributes in the page

 JavaScript can change all the CSS styles in the page

 JavaScript can remove existing HTML elements and attributes

 JavaScript can add new HTML elements and attributes

 JavaScript can react to all existing HTML events in the page
 JavaScript can create new HTML events in the page

(ii) Describe the concepts of Popup Boxes.

JavaScript Popup Boxes

JavaScript has three kind of popup boxes: Alert box, Confirm box, and Prompt box.

JavaScript Popup Boxes

JavaScript has three kind of popup boxes: Alert box, Confirm box, and Prompt box.

Alert Box

An alert box is often

used if you want to

make sure information

comes through to the

user.

When an alert box

pops up, the user will

have to click "OK" to

proceed

Syntax

window.alert("sometext");

The window.alert() method can be written

without the window prefix

Example

alert("I am an alert

box!");

Confirm Box

When a confirm box

pops up, the user will

have to click either

"OK" or "Cancel" to

proceed.

If the user clicks

"OK", the box

returns true. If the user

clicks "Cancel", the

box returns false.

Syntax

window.confirm("sometext");

The window.confirm() method can be

written without the window prefix.

Example

if (confirm("Press a

button!")) {

 txt = "You pressed

OK!";

} else {

 txt = "You pressed

Cancel!";

}

Prompt Box

A prompt box is often

used if you want the

user to input a value

before entering a page.

If the user clicks "OK"

the box returns the

input value. If the user

clicks "Cancel" the

box returns null.

Syntax

window.prompt("sometext","defaultText");

The window.prompt() method can be

written without the window prefix.

Example

var person =

prompt("Please enter

your name", "Harry

Potter");

if (person == null ||

person == "") {

 txt = "User cancelled

the prompt.";

} else {

 txt = "Hello " + person

+ "! How are you

today?";

}

3.

(i) Write short notes on Date and Objects.
The Date Object. The Date object is a built-in object in JavaScript that stores the date and
time. It provides a number of built-in methods for formatting and managing that data. By
default, a new Date instance without arguments provided creates an object corresponding to
the current date and time

The Date Object

The Date object is a built-in object in JavaScript that stores the date and time. It

provides a number of built-in methods for formatting and managing that data.

By default, a new Date instance without arguments provided creates an object

corresponding to the current date and time. To demonstrate JavaScript’s Date, let’s

create a variable and assign the current date to it.

https://www.digitalocean.com/community/tutorials/understanding-objects-in-javascript

EXAMPLE

now.js

// Set variable to current date and time

const now = new Date();

// View the output

now;

Output

Wed Oct 18 2017 12:41:34 GMT+0000 (UTC)

Date Creation Output

new Date() Current date and time

new Date(timestamp)
Creates date based on milliseconds since

Epoch time

new Date(date string) Creates date based on date string

new Date(year, month,

day, hours, minutes,

seconds, milliseconds)

Creates date based on specified date and

time

(ii) Explain in detail about Regular expressions.

A JavaScript Regular Expression (or Regex) is a sequence of characters that we can utilize to

work effectively with strings. Using this syntax, we can:

 search for text in a string

 replace substrings in a string

 extract information from a string

4.

(i) Describe the control statements in Java.

Conditional Statements

Very often when you write code, you want to perform different actions for

different decisions.

You can use conditional statements in your code to do this.

In JavaScript we have the following conditional statements:

 Use if to specify a block of code to be executed, if a specified condition

is true
 Use else to specify a block of code to be executed, if the same

condition is false

 Use else if to specify a new condition to test, if the first condition is

false

 Use switch to specify many alternative blocks of code to be executed

JavaScript Loops

Loops are handy, if you want to run the same code over and over again, each

time with a different value.

Often this is the case when working with arrays:

<script>

var cars = ["BMW", "Volvo", "Saab", "Ford", "Fiat", "Audi"];

var text = "";

var i;
for (i = 0; i < cars.length; i++) {
 text += cars[i] + "
";

}

document.getElementById("demo").innerHTML = text;

</script>

OUTPUT

JavaScript For Loop

BMW

Volvo

Saab

Ford

Fiat

Audi

(ii) Discuss any two validation functions in java script.

5.

(i) Write a Java script to find the Prime number between 1 and 100.

<html>

 <head>

 <title>JavaScript Prime</title>

 </head>

 <body>

 <script>

 for (var limit = 1; limit <= 20; limit++) {

 var a = false;

 for (var i = 2; i <= limit; i++) {

 if (limit%i===0 && i!==limit) {

 a = true;

 }

 }

 if (a === false) {

 document.write("
"+limit);

 }

 }

 </script>

 </body>

</html>

(ii) Write a Java Script to find factorial of a given number.

function factorial(n) {
 return (n != 1) ? n * factorial(n - 1) : 1;
}

alert(factorial(5)); // 120

6.

(i) Demonstrate a java script for displaying the context menu.

(ii) Demonstrate a java script to display the welcome message

using the alert whenever button of a html form is pressed.

<html>

 <head>

 <title>Display Alert Message on Button Click Event.</title>

 <script type="text/javascript">

 function showMessage(){

 alert("Welcome friends, You pressed the Button.");

 }

 </script>

 </head>

<body>

 <center>

 <h1>Display Alert Message on Button Click Event.</h1>

 Click on button to display message:

 <input type="button" id="btnShowMsg" value="Click Me!"

onClick='showMessage()'/>

 </center>

</body>

</html>

Result

Welcome friends, You pressed the Button.

7.

(i) Evaluate how DOM Nodes and Trees can be used.

What is the purpose of HTML DOM Node Tree?

- HTML DOM view the HTML document with a tree structure format and it consists of root
node and child nodes.

- The node-tree is being accessed using the tree formation and the structure in which the
elements get created.

- The contents that are used being modified or removed using the new elements and it can be
created within the limitations.

- The structure consists of a document that is the root and within it Root element <html> from
where the tree starts.

- It consists of sub-elements like <head> and <body> and other text and attributes written in
the HTML format.

(ii) Evaluate the way of Traversing and modifying a DOM Tree.

8.
(i) Discuss the concepts of Registering Event handlers.
As mentioned above, events are actions or occurrences that happen in the system you are
programming — the system produces (or "fires") a signal of some kind when an event occurs,

and also provides a mechanism by which some kind of action can be automatically taken (that
is, some code running) when the event occurs. For example in an airport when the runway is
clear for a plane to take off, a signal is communicated to the pilot, and as a result, they
commence piloting the plane.

In the case of the Web, events are fired inside the browser window, and tend to be
attached to a specific item that resides in it — this might be a single element, set of
elements, the HTML document loaded in the current tab, or the entire browser
window. There are a lot of different types of events that can occur, for example:

 The user clicking the mouse over a certain element or hovering the cursor over a
certain element.

 The user pressing a key on the keyboard.

 The user resizing or closing the browser window.

 A web page finishing loading.

 A form being submitted.

 A video being played, or paused, or finishing play.

 An error occurring.

Each available event has an event handler, which is a block of code (usually a JavaScript
function that you as a programmer create) that will be run when the event fires. When such a
block of code is defined to be run in response to an event firing, we say we are registering an
event handler. Note that event handlers are sometimes called event listeners — they are
pretty much interchangeable for our purposes, although strictly speaking, they work together.
The listener listens out for the event happening, and the handler is the code that is run in
response to it happening.

In the following example, we have a single <button>, which when pressed, makes the
background change to a random color:

<button>Change color</button>

The JavaScript looks like so:

const btn = document.querySelector('button');

function random(number) {
 return Math.floor(Math.random() * (number+1));
}

btn.onclick = function() {
 const rndCol = 'rgb(' + random(255) + ',' + random(255) + ',' +
random(255) + ')';
 document.body.style.backgroundColor = rndCol;
}

(ii) Discuss the concepts of Event Handling.

https://developer.mozilla.org/en-US/docs/Web/HTML/Element/button

JavaScript Events

HTML events are "things" that happen to HTML elements.

When JavaScript is used in HTML pages, JavaScript can "react" on these events.

HTML Events

An HTML event can be something the browser does, or something a user does.

Here are some examples of HTML events:

 An HTML web page has finished loading

 An HTML input field was changed
 An HTML button was clicked

Often, when events happen, you may want to do something.

JavaScript lets you execute code when events are detected.

HTML allows event handler attributes, with JavaScript code, to be added to HTML elements.

With single quotes:

<element event='some JavaScript'>

With double quotes:

<element event="some JavaScript">

In the following example, an onclick attribute (with code), is added to a <button> element:

Example

<button onclick="document.getElementById('demo').innerHTML = Date()">The time

is?</button>

OUTPUT

Sun Jan 12 2020 06:00:41 GMT+0530 (India Standard Time)

In the example above, the JavaScript code changes the content of the element with id="demo".

9.

Analyze a web page to create a clock with timing event.

function showTime(){

 var date = new Date();

 var h = date.getHours(); // 0 - 23

 var m = date.getMinutes(); // 0 - 59

 var s = date.getSeconds(); // 0 - 59

 var session = "AM";

 if(h == 0){

 h = 12;

 }

 if(h > 12){

 h = h - 12;

 session = "PM";

 }

 h = (h < 10) ? "0" + h : h;

 m = (m < 10) ? "0" + m : m;

 s = (s < 10) ? "0" + s : s;

 var time = h + ":" + m + ":" + s + " " + session;

 document.getElementById("MyClockDisplay").innerText = time;

 document.getElementById("MyClockDisplay").textContent = time;

 setTimeout(showTime, 1000);

}

showTime();

<html>

<head>

<title>Digital Clock</title>

<style>

#clock{

 color:#F0F;

}

</style>

</head>

<body>

<script>

function digclock()

{

 var d = new Date()

 var t = d.toLocaleTimeString()

 document.getElementById("clock").innerHTML = t

}

setInterval(function(){digclock()},1000)

</script>

Digital Clock

<div id="clock">

</div>

</body>

</html>

OUTPUT
Output :

Digital Clock
5:54:26 PM

10.

(i) Write short notes on DHTML with JavaScript.

Dynamic HyerText Markup Language (DHTML) is a combination of Web development
technologies used to create dynamically changing websites. Web pages may include
animation, dynamic menus and text effects. The technologies used include a
combination of HTML, JavaScript or VB Script,
CSS and the document object model (DOM).

Designed to enhance a Web user’s experience, DHTML includes the following
features:

 Dynamic content, which allows the user to dynamically change Web page
content

 Dynamic positioning of Web page elements
 Dynamic style, which allows the user to change the Web page’s color, font,

size or content

EXAMPLE

<! DOCTYPE html PUBLIC "-//abc//DTD XHTML 1.1//EN"
"http://www.abc.org/TR/xhtml11/DTD/xhtml11.dtd">
<html xmlns="http://www.abc.org/1999/xhtml">
<head>
<title>DHTML example</title>
<script type="text/JavaScript">
 function greet_user()
 {
 var name=document.getElementById(“userName”).value;

 if(name==””)
 {
 alert(“Welcome”+name);
 }
 else
 {
 alert(“Please provide User Name”)
 }
 }
</script>
</head>
 <body>
 <table border=”1” cellspacing=”3”>
 <tr>
 <td colspan=”2”><h6> Please Enter Your Name </h6></td>
 </tr>
 <tr>
 <td><h4>User Name </h4></td>
 <td><input type=”text” id=”userName” ></td>
 </tr>
 <tr>
 <td colspan=”2”><input type=”button” value=”Submit”
onclick=”greet_user()”/>
 </table>
 </body>
</html>
(ii) Classify moving elements.

11.

Explain the concept of JSON with example.

JSON is a format for storing and transporting data.

JSON is often used when data is sent from a server to a web page.

What is JSON?

 JSON stands for JavaScript Object Notation

 JSON is a lightweight data interchange format
 JSON is language independent *

 JSON is "self-describing" and easy to understand

* The JSON syntax is derived from JavaScript object notation syntax, but the

JSON format is text only. Code for reading and generating JSON data can be
written in any programming language.

JSON Example

This JSON syntax defines an employees object: an array of 3 employee

records (objects):

JSON Example

{

"employees":[

 {"firstName":"John", "lastName":"Doe"},

 {"firstName":"Anna", "lastName":"Smith"},

 {"firstName":"Peter", "lastName":"Jones"}

]

}

12.

Describe in detail about JSON Objects and Arrays.

JSON Arrays

Arrays as JSON Objects

Example

["Ford", "BMW", "Fiat"]

Arrays in JSON are almost the same as arrays in JavaScript.

In JSON, array values must be of type string, number, object, array, boolean
or null.

In JavaScript, array values can be all of the above, plus any other valid
JavaScript expression, including functions, dates, and undefined.

Arrays in JSON Objects

Arrays can be values of an object property:

Example

{

"name":"John",

"age":30,

"cars":["Ford", "BMW", "Fiat"]
}

Accessing Array Values

You access the array values by using the index number:

Example

x = myObj.cars[0];

Looping Through an Array

You can access array values by using a for-in loop:

Example

for (i in myObj.cars) {

 x += myObj.cars[i];
}

OUTPUT

Looping through an array using a for in loop:

Ford

BMW

Fiat

13.

Analyze about Function files and Http Request with sample

program.

<!doctype html>

<title>Example</title>

<script>

// Store XMLHttpRequest and the JSON file location in variables

var xhr = new XMLHttpRequest();

var url = "https://www.quackit.com/json/tutorial/artists.txt";

// Called whenever the readyState attribute changes

xhr.onreadystatechange = function() {

 // Check if fetch request is done

 if (xhr.readyState == 4 && xhr.status == 200) {

 // Parse the JSON string

 var jsonData = JSON.parse(xhr.responseText);

 // Call the showArtists(), passing in the parsed JSON string

 showArtists(jsonData);

 }

};

// Do the HTTP call using the url variable we specified above

xhr.open("GET", url, true);

xhr.send();

// Function that formats the string with HTML tags, then outputs the result

function showArtists(data) {

 var output = ""; // Open list

 var i;

 // Loop through the artists, and add them as list items

 for (var i in data.artists) {

 output += "" + data.artists[i].artistname + " (Born: " + data.artists[i].born + ")";

 }

 output += ""; // Close list

 // Output the data to the "artistlist" element

 document.getElementById("artistList").innerHTML = output;

}

</script>

<!-- The output appears here -->

<div id="artistList"></div>

OUTPUT

 Leonard Cohen (Born: 1934)

 Joe Satriani (Born: 1956)

 Snoop Dogg (Born: 1971)

14.

Summarize about

(i) SQL Data Definition Commands

Examples of Sql DDL commands are

 CREATE – Create an object. I mean, create a database, table, triggers,

index, functions, stored procedures, etc.

 DROP – This SQL DDL command helps to delete objects. For example, delete tables,

delete a database, etc.

 ALTER – Used to alter the existing database or its object structures.

 TRUNCATE – This SQL DDL command removes records from tables

 RENAME – Renaming the database objects

(ii) Data Manipulation Commands.

Examples of DML commands are

 SELECT – This SQL DML command select records or data from a table

 INSERT – Insert data into a database table.

 UPDATE – This SQL DML command will update existing records within a table

https://www.tutorialgateway.org/how-to-create-database-in-sql-server/
https://www.tutorialgateway.org/sql-create-table/
https://www.tutorialgateway.org/triggers-in-sql-server/
https://www.tutorialgateway.org/user-defined-functions-in-sql/
https://www.tutorialgateway.org/stored-procedures-in-sql/
https://www.tutorialgateway.org/sql-alter-table/
https://www.tutorialgateway.org/sql-truncate-table/
https://www.tutorialgateway.org/sql-rename-table/
https://www.tutorialgateway.org/sql-select-statement/
https://www.tutorialgateway.org/sql-insert-statement/
https://www.tutorialgateway.org/sql-update-statement/

 DELETE – Delete unwanted records from a table

PART – C

Q.No Questions

1.

Analyze the merits and demerits of DOM parser with neat example.

<!DOCTYPE html>

<html>

<head>

 <script type="text/javascript">

 var str = "<root><customer name='John' address='Chicago'></customer></root>";

 function CreateXMLDocument () {

 var xmlDoc = null;

 if (window.DOMParser) {

 var parser = new DOMParser ();

 xmlDoc = parser.parseFromString (str, "text/xml");

 } else if (window.ActiveXObject) {

 xmlDoc = new ActiveXObject ("Microsoft.XMLDOM");

 xmlDoc.async = false;

 xmlDoc.loadXML (str);

 }

 var customerNode = xmlDoc.getElementsByTagName ("customer")[0];

 var customerName = customerNode.getAttribute ("name");

 alert ("The name of the first customer is " + customerName);

 }

 </script>

</head>

<body>

 <button onclick="CreateXMLDocument ();">Create an XML document from a

string</button>

</body>

</html>

2.

Consider a java script and HTML to create a page with two panes.

The first pane (on left) should have a text area where HTML code

can bet typed by the user. The pane on the left should have a text

area where HTML code can be typed by the user. The pane on the

right side should display the preview of the HTML code typed by

the user, as it would be seen on the browser.

3.

Develop a DHTML program to handle the user click event.

<!DOCTYPE html>

<html>

https://www.tutorialgateway.org/sql-delete-statement/

<body>

<p>Click the button to display the time.</p>

<button onclick="getElementById('demo').innerHTML=Date()">What is the

time?</button>

<p id="demo"></p>

</body>

</html>

OUTPUT

Click the button to display the time.

What is the time?

Sat Jan 11 2020 22:36:24 GMT+0530 (India Standard Time)

4.

Formulate a JavaScript program that work with JSON.

JSON Object Syntax

Example

{ "name":"John", "age":30, "car":null }

 JSON objects are surrounded by curly braces {}.

 JSON objects are written in key/value pairs.

 Keys must be strings, and values must be a valid JSON data type (string, number,

object, array, boolean or null).

 Keys and values are separated by a colon.

 Each key/value pair is separated by a comma.

Accessing Object Values

You can access the object values by using dot (.) notation:

Example

myObj = { "name":"John", "age":30, "car":null };

x = myObj.name;

You can also access the object values by using bracket ([]) notation:

Example

myObj = { "name":"John", "age":30, "car":null };

x = myObj["name"];

Looping an Object

You can loop through object properties by using the for-in loop:

Example

In a for-in loop, use the bracket notation to access the property values:

Example

<!DOCTYPE html>

<html>

<body>

<p>How to loop through all properties in a JSON object.</p>

<p id="demo"></p>

<script>

var myObj, x;

myObj = {"name":"John", "age":30, "car":null};

for (x in myObj) {

 document.getElementById("demo").innerHTML += x + " " + myObj[x] + "
";

}

</script>

</body>

</html

OUTPUT

How to loop through all properties in a JSON object.

name John

age 30

car null

Nested JSON Objects

Values in a JSON object can be another JSON object.

Example

myObj = {

 "name":"John",

 "age":30,

 "cars": {

 "car1":"Ford",

 "car2":"BMW",

 "car3":"Fiat"

 }

 }

You can access nested JSON objects by using the dot notation or bracket notation:

Example

x = myObj.cars.car2;
// or:
x = myObj.cars["car2"];

OUTPUT

How to access nested JSON objects.

BMW

BMW

CS8651 Internet Programming – 2017Reg

UNIT III

- SERVER SIDE PROGRAMMING

Servlets: Java Servlet Architecture – Servlet Life Cycle – Form GET and POST actions – Session

Handling – Understanding Cookies – Installing and Configuring Apache Tomcat Web Server;

DATABASE CONNECTIVITY: JDBC perspectives, JDBC program example; JSP: Understanding

Java Server Pages – JSP Standard Tag Library (JSTL) – Creating HTML forms by embedding JSP

code.

PART-A

Q.No Questions

1.

What are servlets?
A servlet is a Java programming language class that is used to extend the capabilities of servers

that host applications accessed by means of a request-response programming model. Although

servlets can respond to any type of request, they are commonly used to extend the applications

hosted by web servers. For such applications, Java Servlet technology defines HTTP-specific

servlet classes.

 Servlet is a technology which is used to create a web application.

 Servlet is an API that provides many interfaces and classes including

documentation.

 Servlet is an interface that must be implemented for creating any Servlet.

 Servlet is a class that extends the capabilities of the servers and responds to the

incoming requests. It can respond to any requests.

 Servlet is a web component that is deployed on the server to create a dynamic

web page.

2.

List the application of servlets.

Servlets may be used at different levels on a distributed framework. The following are

some examples of servlet usage:

 To accept form input and generate HTML Web pages dynamically.

 As part of middle tiers in enterprise networks by connecting to SQL databases via

JDBC.

 In conjunction with applets to provide a high degree of interactivity and dynamic

Web content generation.

 For collaborative applications such as online conferencing.

 A community of servlets could act as active agents which share data with each

other.

 Servlets could be used for balancing load among servers which mirror the same

content.

 Protocol support is one of the most viable uses for servlets. For example, a file

service can start with NFS and move on to as many protocols as desired; the

transfer between the protocols would be made transparent by servlets. Servlets

could be used for tunneling over HTTP to provide chat, newsgroup or other file

server functions.

3.

Summarize the advantages and disadvantages of servlets.

Servlet Advantage

 Servlets provide a way to generate dynamic documents that is both easier to

write and faster to run.

 Provide all the powerfull features of JAVA, such as Exception handling

and garbage collection.

 Servlet enables easy portability across Web Servers.

 Servlet can communicate with different servlet and servers.

 Since all web applications are stateless protocol, servlet uses its own API to

maintain session

Servlet Disadvantage

 Designing in servlet is difficult and slows down the application.

 Writing complex business logic makes the application difficult to

understand.

 You need a Java Runtime Environment on the server to run servlets.

 CGI is a completely language independent protocol, so you can write

 CGIs in whatever languages you have available (including Java if you

want to).

4.

Show how is session tracking is achieved by the URL rewriting?

URL Rewriting

In URL rewriting, we append a token or identifier to the URL of the next Servlet or the

next resource. We can send parameter name/value pairs using the following format:

url?name1=value1&name2=value2&??

A name and a value is separated using an equal = sign, a parameter name/value pair is

separated from another parameter using the ampersand(&). When the user clicks the

hyperlink, the parameter name/value pairs will be passed to the server. From a Servlet,

we can use getParameter() method to obtain a parameter value.

Advantage of URL Rewriting

1. It will always work whether cookie is disabled or not (browser independent).

2. Extra form submission is not required on each pages.

Disadvantage of URL Rewriting

1. It will work only with links.

2. It can send Only textual information.

URL Rewriting

URL rewriting is another way to support anonymous session tracking.
With URL rewriting, every local URL the user might click on is
dynamically modified, or rewritten, to include extra information. The
extra information can be in the form of extra path information, added
parameters, or some custom, server-specific URL change.

Example 7-2 shows a revised version of our shopping cart viewer that uses

URL rewriting in the form of extra path information to anonymously track a

shopping cart.

Example 7-2. Session tracking using URL rewriting import java.io.*;

 import javax.servlet.*;

import javax.servlet.http.*;

public class ShoppingCartViewerRewrite extends HttpServlet { public void

doGet(HttpServletRequest req, HttpServletResponse res) throws

ServletException, IOException { res.setContentType("text/html");

PrintWriter out = res.getWriter(); out.println(""); out.println("");

// Get the current session ID, or generate one if necessary

 String sessionid = req.getPathInfo();

 if (sessionid == null)

{ sessionid = generateSessionId();

}

// Cart items are associated with the session ID

String[] items = getItemsFromCart(sessionid);

 // Print the current cart items.

out.println("You currently have the following items in your cart:

");

 if (items == null) { out.println("None"); } else { out.println("

");

for (int i = 0; i < items.length; i++)

{ out.println("

 " + items[i]); } out.println("

"); }

// Ask if the user wants to add more items or check out. // Include the session

ID in the action URL.

 out.println("

");

out.println("Would you like to

");

out.println("
\

"); out.println("
\

"); out.println("

");

// Offer a help page. Include the session ID in the URL. out.println("For

help, click here");

out.println(""); }

private static String generateSessionId() { String uid = new

java.rmi.server.UID().toString();

// guaranteed unique return java.net.URLEncoder.encode(uid);

 // encode any special chars }

private static String[] getItemsFromCart(String sessionid) {

// Not implemented }

 }

This servlet first tries to retrieve the current session ID using

getPathInfo() . If a session ID is not specified, it calls

generateSessionId() to generate a new unique session ID using an RMI

https://docstore.mik.ua/%22/servlet/Help/%22

class designed specifically for this. The session ID is used to fetch and

display the current items in the cart. The ID is then added to the form's

ACTION attribute, so it can be retrieved by the ShoppingCart servlet.

The session ID is also added to a new help URL that invokes the Help

servlet. This wasn't possible with hidden form fields because the Help

servlet isn't the target of a form submission. docstore.mik.ua/orelly/java-

ent/servlet/ch07_03.htm

5.

Compare GET and POST request type.

GET POST

1) In case of Get request,

only limited amount of

data can be sent because

data is sent in header.

In case of post request, large amount

of data can be sent because data is

sent in body.

2) Get request is not

secured because data is

exposed in URL bar.

Post request is secured because data is

not exposed in URL bar.

3) Get request can be

bookmarked.

Post request cannot be bookmarked.

4) Get request

is idempotent . It means

second request will be

ignored until response of

first request is delivered

Post request is non-idempotent.

5) Get request is more

efficient and used more

than Post.

Post request is less efficient and used

less than get.

6.

Summarize the servlet interface and its methods.

Servlet Interface

1. Servlet Interface

2. Methods of Servlet interface

 Servlet interface provides common behavior to all the servlets.

 Servlet interface defines methods that all servlets must implement.

https://www.javatpoint.com/Servlet-interface
https://www.javatpoint.com/Servlet-interface#servletmethods

 Servlet interface needs to be implemented for creating any servlet (either directly or

indirectly).

 It provides 3 life cycle methods that are used to initialize the servlet, to service the requests,

and to destroy the servlet and 2 non-life cycle methods.

Methods of Servlet interface

There are 5 methods in Servlet interface. The init, service and destroy are the life cycle methods of

servlet. These are invoked by the web container.

Method Description

public void init(ServletConfig

config)

initializes the servlet. It is the life cycle

method of servlet and invoked by the web

container only once.

public void service(ServletRequest

request,ServletResponse response)

provides response for the incoming

request. It is invoked at each request by

the web container.

public void destroy() is invoked only once and indicates that

servlet is being destroyed.

public ServletConfig

getServletConfig()

returns the object of ServletConfig.

public String getServletInfo() returns information about servlet such as

writer, copyright, version etc.

Servlet Example by implementing Servlet interface

File: First.java

1. import java.io.*;

2. import javax.servlet.*;

3.

4. public class First implements Servlet{

5. ServletConfig config=null;

6.

7. public void init(ServletConfig config){

8. this.config=config;

9. System.out.println("servlet is initialized");

10. }

11.

12. public void service(ServletRequest req,ServletResponse res)

13. throws IOException,ServletException{

14.

15. res.setContentType("text/html");

16.

17. PrintWriter out=res.getWriter();

18. out.print("<html><body>");

19. out.print("hello simple servlet");

20. out.print("</body></html>");

21.

22. }

23. public void destroy(){System.out.println("servlet is destroyed");}

24. public ServletConfig getServletConfig(){return config;}

25. public String getServletInfo(){return "copyright 2007-1010";}

26.

27. }

7.

Sketch the Servlet life cycle.

Life Cycle of a Servlet (Servlet Life Cycle)

The web container maintains the life cycle of a servlet instance. Let's see the life cycle of the servlet:

A. Life Cycle of a Servlet

1. Servlet class is loaded

2. Servlet instance is created

3. init method is invoked

4. service method is invoked

5. destroy method is invoked

https://www.javatpoint.com/life-cycle-of-a-servlet
https://www.javatpoint.com/life-cycle-of-a-servlet#servletlifecycle1
https://www.javatpoint.com/life-cycle-of-a-servlet#servletlifecycle2
https://www.javatpoint.com/life-cycle-of-a-servlet#servletlifecycle3
https://www.javatpoint.com/life-cycle-of-a-servlet#servletlifecycle4
https://www.javatpoint.com/life-cycle-of-a-servlet#servletlifecycle5

As displayed in the above diagram, there are three states of a servlet: new, ready and end. The servlet is in

new state if servlet instance is created. After invoking the init() method, Servlet comes in the ready state.

In the ready state, servlet performs all the tasks. When the web container invokes the destroy() method, it

shifts to the end state.

8.

Show the use of ‘param’ variable in JSP.

Jsp param

<jsp:param> tag is used to represent parameter value during jsp forward or include action

this should be the sub tag of <jsp:forward> or <jsp:include>.

When an include or forward element is invoked, the original request object is provided to

the target page. If you wish to provide additional data to that page, you can append

parameters to the request object by using the jsp:param element.

Syntax

<jsp:param name=" " value=" "/>

Example

<jsp:include page="contact.jsp"/>

<jsp:param name="param1" value="value1"/>

</jsp:include>

Example

<jsp:forward page="home.jsp"/>

<jsp:param name="param1" value="value1"/>

</jsp:forward>

9.

Quote the uses of cookies.

Cookies in Servlet

A cookie is a small piece of information that is persisted between the multiple client

requests.

A cookie has a name, a single value, and optional attributes such as a comment, path and

domain qualifiers, a maximum age, and a version number.

How Cookie works

By default, each request is considered as a new request. In cookies technique, we add

cookie with response from the servlet. So cookie is stored in the cache of the browser.

After that if request is sent by the user, cookie is added with request by default. Thus, we

recognize the user as the old user.

Types of Cookie

There are 2 types of cookies in servlets.

1. Non-persistent cookie

2. Persistent cookie

Non-persistent cookie

It is valid for single session only. It is removed each time when user closes the browser.

Persistent cookie

It is valid for multiple session . It is not removed each time when user closes the

browser. It is removed only if user logout or signout.

Advantage of Cookies

1. Simplest technique of maintaining the state.

2. Cookies are maintained at client side.

Disadvantage of Cookies

1. It will not work if cookie is disabled from the browser.

2. Only textual information can be set in Cookie object.

10.

Analyze about java scriplet.
In JavaServer Pages (JSP) technology, a scriptlet is a piece of Java-code embedded
in the HTML-like JSP code. The scriptlet is everything inside the <% %> tags. Between
these the user can add any valid Scriptlet i.e. any valid Java Code. In AppleScript,
a scriptlet is a small script.

JSP scriptlet tag

A scriptlet tag is used to execute java source code in JSP. Syntax is as follows:

1. <% java source code %>

Example of JSP scriptlet tag

In this example, we are displaying a welcome message.

1. <html>

2. <body>

3. <% out.print("welcome to jsp"); %>

4. </body>

5. </html>

11.

Express appropriate java script code to remove an element (current

element) from a DOM.

A. Removing Existing HTML Elements

To remove an HTML element, use the remove() method:

1. Example

<div>

 <p id="p1">This is a paragraph.</p>

 <p id="p2">This is another paragraph.</p>

</div>

<script>

var elmnt = document.getElementById("p1");

elmnt.remove();

</script>

12. Define JSP.

JavaServer Pages (JSP) is a technology for developing Webpages that supports dynamic

content. This helps developers insert java code in HTML pages by making use of special

JSP tags, most of which start with <% and end with %>.

A JavaServer Pages component is a type of Java servlet that is designed to fulfill the role

of a user interface for a Java web application. Web developers write JSPs as text files that

combine HTML or XHTML code, XML elements, and embedded JSP actions and

commands.

Using JSP, you can collect input from users through Webpage forms, present records

from a database or another source, and create Webpages dynamically.

JSP tags can be used for a variety of purposes, such as retrieving information from a

database or registering user preferences, accessing JavaBeans components, passing

control between pages, and sharing information between requests, pages etc.

13.

List any three advantages of java servlet over JSP.

1. Being an extension to Java servlet, it can use every feature of Java Servlet. Also,

custom tags can be used along with it.

2. There is no need to recompile JSP when changed. The changes automatically

appear when run.

3. The tags which are used are easy to understand and write.

4. Supports Java API’s which can now be easily used and integrated with the

HTML code.

5. The results which are obtained are in HTML format, so can be opened on any

browsers.

6. Customized JSP tags can be used. Ex: Tags with XML.

7. Changes can be added into the business logic page rather than changing in each

and every page.

14.

Rewrite the code segment to store current server time in session using

Java Servlet API.

Write a servlet application to print the current date and time.

Answer:

The most important advantage of using Servlet is that we can use all the

https://www.educba.com/java-servlet-interview-questions/

methods available in core java. The Date class is available in java.util

package.

Below program shows how to print the current date and time. We can
use simple Date object with toString() to print current date and time.

DateSrv.java

import java.io.*;

import javax.servlet.*;

public class DateSrv extends GenericServlet

{

 //implement service()

 public void service(ServletRequest req, ServletResponse res) throws

IOException, ServletException

 {

 //set response content type

 res.setContentType("text/html");

 //get stream obj

 PrintWriter pw = res.getWriter();

 //write req processing logic

 java.util.Date date = new java.util.Date();

 pw.println("<h2>"+"Current Date & Time: "

+date.toString()+"</h2>");

 //close stream object

 pw.close();

 }

}

Output:

15.
Compare the difference between JSP and servlet.

Difference Between Servlet and JSP

In this article we will list some of the differences between Servlets and JSP.

SERVLET JSP

A servlet is a server-side program and

written purely on Java.

JSP is an interface on top of Servlets. In

another way, we can say that JSPs are

extension of servlets to minimize the effort of

developers to write User Interfaces using Java

programming.

Servlets run faster than JSP JSP runs slower because it has the transition

phase for converting from JSP page to a

Servlet file. Once it is converted to a Servlet

then it will start the compilation

Executes inside a Web server, such as

Tomcat

A JSP program is compiled into a Java servlet

before execution. Once it is compiled into a

servlet, it's life cycle will be same as of

servlet. But, JSP has it's own API for the

lifecycle.

Receives HTTP requests from users and

provides HTTP responses

Easier to write than servlets as it is similar to

HTML.

We can not build any custom tags One of the key advantage is we can build

custom tags using JSP API (there is a separate

package available for writing the custom tags)

which can be available as the re-usable

components with lot of flexibility

Servlet advantages include:

1. Performance : get loaded upon first

request and remains in memory

idenfinately.

2. Simplicity : Run inside controlled server

environment. No specific client software is

needed:web broser is enough

3. Session Management : overcomes

HTTP's stateless nature

4. Java Technology : network

access,Database connectivity, j2ee

integration

JSP Provides an extensive infrastructure

for:

1. Tracking sessions.

2. Managing cookies.

3. Reading and sending HTML headers.

4. Parsing and decoding HTML form data.

5. JSP is Efficient: Every request for a JSP is

handled by a simple Java thread

6. JSP is Scalable: Easy integration with

other backend services

7. Seperation of roles: Developers, Content

Authors/Graphic Designers/Web Masters

II. Difference between Servlet and JSP

In brief, it can be defined as Servlet are the java programs that run on a Web
server and act as a middle layer between a request coming from HTTP client and
databases or applications on the HTTP server.While JSP is simply a text
document that contains two types of text: static text which is predefined and
dynamic text which is rendered after server response is received.

sr.
No.

Key Servlet JSP

1

Implementation Servlet is
developed on Java
language.

JSP is primarily written in HTML language
although Java code could also be written on
it but for it, JSTL or other language is
required.

2

MVC In contrast to MVC
we can state
servlet as a
controller which
receives the
request process
and send back the
response.

On the other hand, JSP plays the role of
view to render the response returned by the
servlet.

3

Request type Servlets can accept
and process all
type of protocol
requests.

JSP on the other hand is compatible with
HTTP request only.

4

Session
Management

In Servlet by
default session
management is not
enabled, the user
has to enable it
explicitly.

On the other hand in JSP session
management is automatically enabled.

5
Performance Servlet is faster

than JSP.
JSP is slower than Servlet because first the
translation of JSP to java code is taking
place and then compiles.

6

Modification
reflected

Modification in
Servlet is a time-
consuming task
because it includes
reloading,
recompiling and
restarting the
server as we made
any change in our
code to get
reflected.

On the other hands JSP modification is fast
as just need to click the refresh button and
code change would get reflected.

16.

Summarize briefly about the interaction between a webserver and a

servlet.

How does a web server interact with a servlet?

A servlet is a Java Programming language class that is used to extend the

capabilities of servers that host applications accessed by means of a request-

response programming model. Although servlets can respond to any type of

request, they are commonly used to extend the applications hosted by web servers.

It is also a web component that is deployed on the server to create a dynamic web

page.

In this figure you can see, a client sends a request to the server and the server

generates the response, analyses it and sends the response to the client.

Stages of the Servlet Life Cycle: The Servlet life cycle mainly goes through four

stages,

 Loading a Servlet.

 Initializing the Servlet.

 Request handling

 Destroying the Servlet.

https://www.edureka.co/blog/java-tutorial/

Let’s look at each of these stages in details:

1. Loading a Servlet: The first stage of the Servlet life cycle involves loading

and initializing the Servlet by the Servlet container. The Web container or

Servlet Container can load the Servlet at either of the following two stages

:Initializing the context, on configuring the Servlet with a zero or positive

integer value.If the Servlet is not preceding the stage, it may delay the

loading process until the Web container determines that this Servlet is

needed to service a request.

2. Initializing a Servlet: After the Servlet is instantiated successfully, the

Servlet container initializes the instantiated Servlet object. The container

initializes the Servlet object by invoking the init(ServletConfig) method

which accepts ServletConfig object reference as a parameter.

3. Handling request: After initialization, the Servlet instance is ready to serve

the client requests. The Servlet container performs the following

operations when the Servlet instance is located to service a request :It

creates the ServletRequest and ServletResponse. In this case, if this is an

HTTP request then the Web container

creates HttpServletRequest and HttpServletResponse objects which are

subtypes of the ServletRequest and ServletResponse objects

respectively.

4. Destroying a Servlet: When a Servlet container decides to destroy the

Servlet, it performs the following operations,It allows all the threads

currently running in the service method of the Servlet instance to complete

their jobs and get released.After currently running threads have completed

their jobs, the Servlet container calls the destroy() method on the Servlet

instance.

After the destroy() method is executed, the Servlet container releases all the

references of this Servlet instance so that it becomes eligible for garbage collection.

17.

Define JDBC.

What is JDBC?

JDBC stands for Java Database Connectivity, which is a standard Java API for
database-independent connectivity between the Java programming language
and a wide range of databases.

The JDBC library includes APIs for each of the tasks mentioned below that are
commonly associated with database usage.

 Making a connection to a database.

 Creating SQL or MySQL statements.

 Executing SQL or MySQL queries in the database.

 Viewing & Modifying the resulting records.

Fundamentally, JDBC is a specification that provides a complete set of interfaces
that allows for portable access to an underlying database. Java can be used to
write different types of executables, such as −

 Java Applications

 Java Applets

 Java Servlets

 Java ServerPages (JSPs)

 Enterprise JavaBeans (EJBs).

All of these different executables are able to use a JDBC driver to access a
database, and take advantage of the stored data.

JDBC provides the same capabilities as ODBC, allowing Java programs to
contain database-independent code.

18.

Formulate the three methods that are central to the life cycle of the servlet.

Servlets - Life Cycle

A servlet life cycle can be defined as the entire process from its creation till the

destruction. The following are the paths followed by a servlet.

 The servlet is initialized by calling the init() method.

 The servlet calls service() method to process a client's request.

 The servlet is terminated by calling the destroy() method.

 Finally, servlet is garbage collected by the garbage collector of the JVM.

Now let us discuss the life cycle methods in detail.

The init() Method

The init method is called only once. It is called only when the servlet is created, and not

called for any user requests afterwards. So, it is used for one-time initializations, just as

with the init method of applets.

The servlet is normally created when a user first invokes a URL corresponding to the

servlet, but you can also specify that the servlet be loaded when the server is first started.

When a user invokes a servlet, a single instance of each servlet gets created, with each

user request resulting in a new thread that is handed off to doGet or doPost as appropriate.

The init() method simply creates or loads some data that will be used throughout the life

of the servlet.

The init method definition looks like this −

public void init() throws ServletException {

 // Initialization code...

}

The service() Method

The service() method is the main method to perform the actual task. The servlet container

(i.e. web server) calls the service() method to handle requests coming from the client(

browsers) and to write the formatted response back to the client.

Each time the server receives a request for a servlet, the server spawns a new thread and

calls service. The service() method checks the HTTP request type (GET, POST, PUT,

DELETE, etc.) and calls doGet, doPost, doPut, doDelete, etc. methods as appropriate.

A. The destroy() Method

The destroy() method is called only once at the end of the life cycle of a servlet. This

method gives your servlet a chance to close database connections, halt background

threads, write cookie lists or hit counts to disk, and perform other such cleanup activities.

After the destroy() method is called, the servlet object is marked for garbage collection.

The destroy method definition looks like this −

public void destroy() {

 // Finalization code...

}

19.

Distinguish between servlets and JSP.

Difference between Servlet and JSP

SERVLET JSP

Servlet is a java code. JSP is a html based code.

Writing code for servlet is harder

than JSP as it is html in java. JSP is easy to code as it is java in html.

Servlet plays a controller role in

MVC approach.

JSP is the view in MVC approach for showing

output.

Servlet is faster than JSP.

JSP is slower than Servlet because the first step in

JSP lifecycle is the translation of JSP to java code

and then compile.

Servlet can accept all protocol

requests. JSP only accept http requests.

In Servlet, we can override the

service() method. In JSP, we cannot override its service() method.

In Servlet by default session

management is not enabled, user

have to enable it explicitly.

In JSP session management is automatically

enabled.

In Servlet we have to implement

everything like business logic and

presentation logic in just one

servlet file.

In JSP business logic is separated from presentation

logic by using javaBeans.

Modification in Servlet is a time

consuming task because it

includes reloading, recompiling

and restarting the server.

JSP modification is fast, just need to click the

refresh button.

20.

Discuss the need to use JSTL tags?

III. JSTL (JSP Standard Tag Library)

The JSP Standard Tag Library (JSTL) represents a set of tags to simplify the JSP

development.

A. Advantage of JSTL

1. Fast Development JSTL provides many tags that simplify the JSP.

2. Code Reusability We can use the JSTL tags on various pages.

3. No need to use scriptlet tag It avoids the use of scriptlet tag.

B. JSTL Tags

There JSTL mainly provides five types of tags:

Tag Name Description

Core tags The JSTL core tag provide variable support, URL management, flow

control, etc. The URL for the core tag

is http://java.sun.com/jsp/jstl/core. The prefix of core tag is c.

Function

tags

The functions tags provide support for string manipulation and string

length. The URL for the functions tags

is http://java.sun.com/jsp/jstl/functions and prefix is fn.

Formatting

tags

The Formatting tags provide support for message formatting, number and

date formatting, etc. The URL for the Formatting tags

is http://java.sun.com/jsp/jstl/fmt and prefix is fmt.

XML tags The XML tags provide flow control, transformation, etc. The URL for the

XML tags is http://java.sun.com/jsp/jstl/xml and prefix is x.

SQL tags The JSTL SQL tags provide SQL support. The URL for the SQL tags

is http://java.sun.com/jsp/jstl/sql and prefix is sql.

PART-B

Q.No
Questions

1.

(i) Integrate how servlets work and its life cycle.

(ii) Explain and develop the Servlet API.

2.

(i) Analyze a JavaScript to find factorial of a given number.

function factorial(x)
{

 if (x === 0)
 {
 return 1;
 }
 return x * factorial(x-1);

}
console.log(factorial(5));

OUTPUT : 120

https://www.javatpoint.com/jstl-core-tags
https://www.javatpoint.com/jstl-function-tags
https://www.javatpoint.com/jstl-function-tags
https://www.javatpoint.com/jstl-formatting-tags
https://www.javatpoint.com/jstl-formatting-tags
https://www.javatpoint.com/jstl-xml-tags
https://www.javatpoint.com/jstl-sql-tags

(ii) Differentiate GET and POST method.

Get vs. Post

There are many differences between the Get and Post request. Let's see these
differences:

GET POST

1) In case of Get request,

only limited amount of

data can be sent because data is

sent in header.

In case of post request, large amount of

data can be sent because data is sent in

body.

2) Get request is not

secured because data is exposed

in URL bar.

Post request is secured because data is

not exposed in URL bar.

3) Get request can be

bookmarked.

Post request cannot be bookmarked.

4) Get request is idempotent . It

means second request will be

ignored until response of first

request is delivered

Post request is non-idempotent.

5) Get request is more

efficient and used more than

Post.

Post request is less efficient and used less

than get.

GET and POST

Two common methods for the request-response between a server and client are:

o GET- It requests the data from a specified resource

o POST- It submits the processed data to a specified resource

3.

Demonstrate the Servlet architecture and explain its working

principle.

Servlet Architecture

http://www.instanceofjava.com/2014/12/servlet-architecture.html

 Servlets read the explicit data sent by the clients (browsers). This includes an
HTML form on a Web page or it could also come from an applet or a custom
HTTP client program.

 Read the implicit HTTP request data sent by the clients (browsers). This
includes cookies, media types and compression schemes the browser
understands, and so forth.

 Process the data and generate the results. This process may require talking
to a database, executing an RMI or CORBA call, invoking a Web service, or

computing the response directly.

 Send the explicit data (i.e., the document) to the clients (browsers). This

document can be sent in a variety of formats, including text (HTML or XML),
binary (GIF images), Excel, etc.

 Send the implicit HTTP response to the clients (browsers). This includes
telling the browsers or other clients what type of document is being returned
(e.g., HTML), setting cookies and caching parameters, and other such tasks.

Servlet API:
 Servelt API contains three packages

 javax.servlet: Package contains a number of classes and interfaces that

describe the contract
between a servlet class and the runtime environment provided for an
instance of such a class a

conforming servelt container.
 javax.servlet.aanotation: Package contains a number of annotations that

allow users to use

annotations to declare servlets , filters, listeners and specify the metadata for
the declared component

 javax.servlet.http: Package contains a number of classes and interfaces

that describe and define the contract between a servlet class rnning under
the HTTP protocal and the runtime environment provided for an instance of
such class by a confirming servlet container.

4.

Consider a database that has a table Employee with two columns

Employee Id and Name. Assume that the administrator user id and

password to access to access the database table are Scott and Tiger.

Write a JDBC program that can query and print all entries in the

http://1.bp.blogspot.com/-6msCbYSaQpc/VILmrSILAdI/AAAAAAAAAAs/c6Rt5rglUYI/s1600/Servlet.jpg

table employee. Make the database using type 2 driver

database.driver and connection string jdbc :db.oci.

5.

Describe in detail the session handling in server side programming.

IV. Managing Session in Servlets

We all know that HTTP is a stateless protocol. All requests and responses are
independent. But sometimes you need to keep track of client's activity across
multiple requests. For eg. When a User logs into your website, not matter on
which web page he visits after logging in, his credentials will be with the server,
until he logs out. So this is managed by creating a session.

Session Management is a mechanism used by the Web container to store
session information for a particular user. There are four different techniques
used by Servlet application for session management. They are as follows:

1. Cookies

2. Hidden form field

3. URL Rewriting

4. HttpSession

Session is used to store everything that we can get from the client from all the
requests the client makes.

A. How Session Works

B.
he basic concept behind session is, whenever a user starts using our
application, we can save a unique identification information about him, in an
object which is available throughout the application, until its destroyed. So
wherever the user goes, we will always have his information and we can
always manage which user is doing what. Whenever a user wants to exit from
your application, destroy the object with his information.

6.

(i) Discuss about JSTL.

V. JSTL (JSP Standard Tag Library)

The JSP Standard Tag Library (JSTL) represents a set of tags to simplify the JSP

development.

A. Advantage of JSTL

1. Fast Development JSTL provides many tags that simplify the JSP.

2. Code Reusability We can use the JSTL tags on various pages.

3. No need to use scriptlet tag It avoids the use of scriptlet tag.

B. JSTL Tags

There JSTL mainly provides five types of tags:

Tag Name Description

Core tags The JSTL core tag provide variable support, URL management, flow control,

etc. The URL for the core tag is http://java.sun.com/jsp/jstl/core. The

prefix of core tag is c.

Function

tags

The functions tags provide support for string manipulation and string length.

The URL for the functions tags

is http://java.sun.com/jsp/jstl/functions and prefix is fn.

Formatting

tags

The Formatting tags provide support for message formatting, number and

date formatting, etc. The URL for the Formatting tags

is http://java.sun.com/jsp/jstl/fmt and prefix is fmt.

XML tags The XML tags provide flow control, transformation, etc. The URL for the XML

tags is http://java.sun.com/jsp/jstl/xml and prefix is x.

SQL tags The JSTL SQL tags provide SQL support. The URL for the SQL tags

is http://java.sun.com/jsp/jstl/sql and prefix is sql.

(ii) Summarize a client server JSP program to find simple interest

and display the result in client.

https://www.javatpoint.com/jstl-core-tags
https://www.javatpoint.com/jstl-function-tags
https://www.javatpoint.com/jstl-function-tags
https://www.javatpoint.com/jstl-formatting-tags
https://www.javatpoint.com/jstl-formatting-tags
https://www.javatpoint.com/jstl-xml-tags
https://www.javatpoint.com/jstl-sql-tags

7.

Explain the use of cookies for tracking for tracking requests with a

program.

Session Tracking in JSP

Session Tracking :

HTTP is a "stateless" protocol which means each time a client retrieves a Web page, the

client opens a new connection to the Web server and the server does not keep any record of

previous client request.Session tracking is a mechanism that is used to maintain state about

a series of requests from the same user(requests originating from the same browser) across

some period of time. A session id is a unique token number assigned to a specific user for

the duration of that user's session.

Need Of Session Tracking :

HTTP is a stateless protocol so When there is a series of continuous request and response from

a same client to a server, the server cannot identify which client is sending request.If we want

to maintain the conversational state,session tracking is needed. For example, in a shopping cart

application a client keeps on adding items into his cart using multiple requests.When every

request is made,the server should identify in which client's cart the item is to be added. So in

this scenario, there is a certain need for session tracking.

Solution is, when a client makes a request it should introduce itself by providing unique

identifier every time.There are four ways to maintain session between web client and web

server.

Methods to track session :

 Cookies

 URL Rewriting

 Hidden Fields

 Session API

Cookies :

Cookies mostly used for session tracking. Cookie is a key value pair of information, sent by the

server to the browser. This should be saved by the browser in its space in the client computer.

http://www.javawebtutor.com/articles/jsp/jspsession.php
http://www.javawebtutor.com/articles/jsp/jspsession.php
http://www.javawebtutor.com/articles/jsp/jspsession.php
http://www.javawebtutor.com/articles/jsp/jspsession.php

Whenever the browser sends a request to that server it sends the cookie along with it. Then the

server can identify the client using the cookie.

This is not an effective way because many time browser does not support a cookie or users can

opt to disable cookies using their browser preferences. In such case, the browser will not save

the cookie at client computer and session tracking fails.

8.

(i) Explain about the standard actions in JSP.

Actions are used for controlling the behavior of servlet engine.

How many standard Action Tags are available in JSP?

There are 11 types of Standard Action Tags as following:

 jsp:useBean
 jsp:include
 jsp:setProperty
 jsp:getProperty
 jsp:forward
 jsp:plugin
 jsp:attribute
 jsp:body
 jsp:text
 jsp:param
 jsp:attribute
 jsp:output

(ii) Analyze MVC architecture of JSP.

VI. MVC in JSP

1. MVC in JSP

2. Example of following MVC in JSP

MVC stands for Model View and Controller. It is a design pattern that separates

the business logic, presentation logic and data.

Controller acts as an interface between View and Model. Controller intercepts all
the incoming requests.

Model represents the state of the application i.e. data. It can also have business
logic.

https://www.javatpoint.com/MVC-in-jsp
https://www.javatpoint.com/MVC-in-jsp#mvcex

View represents the presentaion i.e. UI(User Interface).

a) Advantage of MVC (Model 2) Architecture

1. Navigation Control is centralized

2. Easy to maintain the large application

9.

Explain in detail about Servlet database connectivity with an

example of student database.

Example of Registration form in servlet

Table creation :

1. CREATE TABLE "REGISTERUSER"

2. ("NAME" VARCHAR2(4000),

3. "PASS" VARCHAR2(4000),

4. "EMAIL" VARCHAR2(4000),

5. "COUNTRY" VARCHAR2(4000)

6.)

7. /

Example of Registration form in servlet

In this example, we have created the three pages.

o register.html

o Register.java

o web.xml

register.html

In this page, we have getting input from the user using text fields and combobox.

The information entered by the user is forwarded to Register servlet, which is

responsible to store the data into the database.

1. <html>

2. <body>

3. <form action="servlet/Register" method="post">

4.

5. Name:<input type="text" name="userName"/>

6. Password:<input type="password" name="userPass"/>

7. Email Id:<input type="text" name="userEmail"/>

8. Country:

9. <select name="userCountry">

10. <option>India</option>

11. <option>Pakistan</option>

12. <option>other</option>

13. </select>

14.

15.

16. <input type="submit" value="register"/>

17.

18. </form>

19. </body>

20. </html>

Register.java

This servlet class receives all the data entered by user and stores it into the

database. Here, we are performing the database logic. But you may separate it,
which will be better for the web application.

1. import java.io.*;

2. import java.sql.*;

3. import javax.servlet.ServletException;

4. import javax.servlet.http.*;

5.

6. public class Register extends HttpServlet {

7. public void doPost(HttpServletRequest request, HttpServletResponse response)

8. throws ServletException, IOException {

9.

10. response.setContentType("text/html");

11. PrintWriter out = response.getWriter();

12.

13. String n=request.getParameter("userName");

14. String p=request.getParameter("userPass");

15. String e=request.getParameter("userEmail");

16. String c=request.getParameter("userCountry");

17.

18. try{

19. Class.forName("oracle.jdbc.driver.OracleDriver");

20. Connection con=DriverManager.getConnection(

21. "jdbc:oracle:thin:@localhost:1521:xe","system","oracle");

22.

23. PreparedStatement ps=con.prepareStatement(

24. "insert into registeruser values(?,?,?,?)");

25.

26. ps.setString(1,n);

27. ps.setString(2,p);

28. ps.setString(3,e);

29. ps.setString(4,c);

30.

31. int i=ps.executeUpdate();

32. if(i>0)

33. out.print("You are successfully registered...");

34.

35.

36. }catch (Exception e2) {System.out.println(e2);}

37.

38. out.close();

39. }

40.

41. }

10.

Demonstrate the procedure of installing and configuring Apache

Tomcat.

How To Install Apache Tomcat 8 on

Ubuntu 16.04
Apache Tomcat is a web server and servlet container that is used to serve Java

applications. Tomcat is an open source implementation of the Java Servlet and

JavaServer Pages technologies, released by the Apache Software Foundation. This

tutorial covers the basic installation and some configuration of the latest release of

Tomcat 8 on your Ubuntu 16.04 server.

Step 1: Install Java

Tomcat requires Java to be installed on the server so that any Java web application

code can be executed. We can satisfy that requirement by installing OpenJDK with apt-

get.

First, update your apt-get package index:

 sudo apt-get update

Then install the Java Development Kit package with apt-get:

 sudo apt-get install default-jdk

Now that Java is installed, we can create a tomcat user, which will be used to run the

Tomcat service.

Step 2: Create Tomcat User

For security purposes, Tomcat should be run as an unprivileged user (i.e. not root). We

will create a new user and group that will run the Tomcat service.

First, create a new tomcat group:

 sudo groupadd tomcat

Next, create a new tomcat user. We’ll make this user a member of

the tomcat group, with a home directory of /opt/tomcat (where we will install

Tomcat), and with a shell of /bin/false (so nobody can log into the account):

 sudo useradd -s /bin/false -g tomcat -d /opt/tomcat tomcat

Now that our tomcat user is set up, let’s download and install Tomcat.

Step 3: Install Tomcat

The best way to install Tomcat 8 is to download the latest binary release then configure

it manually.

We will install Tomcat to the /opt/tomcat directory. Create the directory, then

extract the archive to it with these commands:

 sudo mkdir /opt/tomcat

 sudo tar xzvf apache-tomcat-8*tar.gz -C /opt/tomcat --strip-

components=1

Next, we can set up the proper user permissions for our installation.

Step 4: Update Permissions

The tomcat user that we set up needs to have access to the Tomcat installation. We’ll

set that up now.

Change to the directory where we unpacked the Tomcat installation:

 cd /opt/tomcat

Give the tomcat group ownership over the entire installation directory:

 sudo chgrp -R tomcat /opt/tomcat

Next, give the tomcat group read access to the conf directory and all of its contents,

and execute access to the directory itself:

 sudo chmod -R g+r conf

 sudo chmod g+x conf

Make the tomcat user the owner of the webapps, work, temp,

and logs directories:

 sudo chown -R tomcat webapps/ work/ temp/ logs/

Now that the proper permissions are set up, we can create a systemd service file to

manage the Tomcat process.

Step 5: Create a systemd Service File

We want to be able to run Tomcat as a service, so we will set up systemd service file.

Tomcat needs to know where Java is installed. This path is commonly referred to as

“JAVA_HOME”. The easiest way to look up that location is by running this command:

Step 6: Adjust the Firewall and Test the Tomcat

Server

Now that the Tomcat service is started, we can test to make sure the default page is

available.

Before we do that, we need to adjust the firewall to allow our requests to get to the

service. If you followed the prerequisites, you will have a ufw firewall enabled

currently.

Tomcat uses port 8080 to accept conventional requests. Allow traffic to that port by

typing:

 sudo ufw allow 8080

Step 7: Configure Tomcat Web Management

Interface

Step 8: Access the Web Interface

Now that we have create a user, we can access the web management interface again in

a web browser. Once again, you can get to the correct interface by entering your

server’s domain name or IP address followed on port 8080 in your browser:

Open in web browser

http://server_domain_or_IP:8080

The page you see should be the same one you were given when you tested earlier:

Your installation of Tomcat is complete! Your are now free to deploy your own Java

web applications!

11.

(i) Discuss about the Servlet life cycle.

VII. Life Cycle of a Servlet (Servlet Life Cycle)

The web container maintains the life cycle of a servlet instance. Let's see the life

cycle of the servlet:

1. Servlet class is loaded.

2. Servlet instance is created.

3. init method is invoked.

4. service method is invoked.

5. destroy method is invoked.

As displayed in the above diagram, there are three states of a servlet: new, ready

and end. The servlet is in new state if servlet instance is created. After invoking

the init() method, Servlet comes in the ready state. In the ready state, servlet

performs all the tasks. When the web container invokes the destroy() method, it
shifts to the end state.

(ii) List JSP advantages.

1. Advantages of JSP over Servlet

There are many advantages of JSP over the Servlet. They are as follows:

a) 1) Extension to Servlet

JSP technology is the extension to Servlet technology. We can use all the features

of the Servlet in JSP. In addition to, we can use implicit objects, predefined tags,
expression language and Custom tags in JSP, that makes JSP development easy.

b) 2) Easy to maintain

JSP can be easily managed because we can easily separate our business logic with

presentation logic. In Servlet technology, we mix our business logic with the
presentation logic.

c) 3) Fast Development: No need to recompile

and redeploy

If JSP page is modified, we don't need to recompile and redeploy the project. The

Servlet code needs to be updated and recompiled if we have to change the look
and feel of the application.

d) 4) Less code than Servlet

In JSP, we can use many tags such as action tags, JSTL, custom tags, etc. that

reduces the code. Moreover, we can use EL, implicit objects, etc.

12.

(i) Explain and write a simple JDBC program.

Java Database Connectivity with MySQL

To connect Java application with the MySQL database, we need to follow 5
following steps.

1. Driver class: The driver class for the mysql database

is com.mysql.jdbc.Driver.

2. Connection URL: The connection URL for the mysql database

is jdbc:mysql://localhost:3306/sonoo where jdbc is the API, mysql is

the database, localhost is the server name on which mysql is running, we

may also use IP address, 3306 is the port number and sonoo is the

database name. We may use any database, in such case, we need to

replace the sonoo with our database name.

3. Username: The default username for the mysql database is root.

4. Password: It is the password given by the user at the time of installing the

mysql database. In this example, we are going to use root as the password.

Let's first create a table in the mysql database, but before creating table, we need

to create database first.

1. create database sonoo;

2. use sonoo;

3. create table emp(id int(10),name varchar(40),age int(3));

Example to Connect Java Application with mysql database

In this example, sonoo is the database name, root is the username and password

both.

1. import java.sql.*;

2. class MysqlCon{

3. public static void main(String args[]){

4. try{

5. Class.forName("com.mysql.jdbc.Driver");

6. Connection con=DriverManager.getConnection(

7. "jdbc:mysql://localhost:3306/sonoo","root","root");

8. //here sonoo is database name, root is username and password

9. Statement stmt=con.createStatement();

10. ResultSet rs=stmt.executeQuery("select * from emp");

11. while(rs.next())

12. System.out.println(rs.getInt(1)+" "+rs.getString(2)+" "+rs.getString(3));

13. con.close();

14. }catch(Exception e){ System.out.println(e);}

15. }

16. }

(ii) List various JSP scripting components.

VIII. JSP Scripting Element

JSP Scripting element are written inside <% %> tags. These code inside <% %> tags are

processed by the JSP engine during translation of the JSP page. Any other text in the

JSP page is considered as HTML code or plain text.

Example:

<html>
 <head>

 <title>My First JSP Page</title>
 </head>
 <%
 int count = 0;
 %>
 <body>
 Page Count is <% out.println(++count); %>
 </body>
</html>

1. Types of scripting elements

Scripting Element Example

Comment <%-- comment --%>

Directive <%@ directive %>

Declaration <%! declarations %>

Scriptlet <% scriplets %>

Expression <%= expression %>

B. JSP Comment

JSP Comment is used when you are creating a JSP page and want to put in comments

about what you are doing. JSP comments are only seen in the JSP page. These

comments are not included in servlet source code during translation phase, nor they

appear in the HTTP response. Syntax of JSP comment is as follows :

<%-- JSP comment --%>

Simple Example of JSP Comment

<html>

 <head>

 <title>My First JSP Page</title>

 </head>

 <%

 int count = 0;

 %>

 <body>

 <%-- Code to show page count --%>

 Page Count is <% out.println(++count); %>

 </body>

</html>

13.
(i) Demonstrate with suitable example for core and formatting tags

in JSTL.

JSTL Formatting tags

The formatting tags provide support for message formatting, number and date

formatting etc. The url for the formatting tags is http://java.sun.com/jsp/jstl/fmt and

prefix is fmt.

The JSTL formatting tags are used for internationalized web sites to display and format

text, the time, the date and numbers. The syntax used for including JSTL formatting

library in your JSP is:

1. <%@ taglib uri="http://java.sun.com/jsp/jstl/fmt" prefix="fmt" %>

Formatting Tags Descriptions

fmt:parseNumber It is used to Parses the string representation of a

currency, percentage or number.

fmt:timeZone It specifies a parsing action nested in its body or the

time zone for any time formatting.

fmt:formatNumber It is used to format the numerical value with specific

format or precision.

fmt:parseDate It parses the string representation of a time and date.

fmt:bundle It is used for creating the ResourceBundle objects which

will be used by their tag body.

fmt:setTimeZone It stores the time zone inside a time zone configuration

variable.

fmt:setBundle It loads the resource bundle and stores it in a bundle

configuration variable or the named scoped variable.

fmt:message It display an internationalized message.

fmt:formatDate It formats the time and/or date using the supplied

pattern and styles.

JSTL Core <c:choose>, <c:when>, <c:otherwise> Tag

The < c:choose > tag is a conditional tag that establish a context for mutually

exclusive conditional operations. It works like a Java switch statement in which
we choose between a numbers of alternatives.

https://www.javatpoint.com/jstl-fmt-parsenumber-tag
https://www.javatpoint.com/jstl-fmt-timezone-tag
https://www.javatpoint.com/jstl-fmt-formatnumber-tag
https://www.javatpoint.com/jstl-fmt-parsedate-tag
https://www.javatpoint.com/jstl-fmt-bundle-tag
https://www.javatpoint.com/jstl-fmt-setbundle-tag
https://www.javatpoint.com/jstl-fmt-setbundle-tag
https://www.javatpoint.com/jstl-fmt-message-tag
https://www.javatpoint.com/jstl-fmt-formatdate-tag

 Example

Let's see the simple example of < c:choose >, < c:when > < c:otherwise > tag:

1. <%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>

2. <html>

3. <head>

4. <title>Core Tag Example</title>

5. </head>

6. <body>

7. <c:set var="income" scope="session" value="${4000*4}"/>

8. <p>Your income is : <c:out value="${income}"/></p>

9. <c:choose>

10. <c:when test="${income <= 1000}">

11. Income is not good.

12. </c:when>

13. <c:when test="${income > 10000}">

14. Income is very good.

15. </c:when>

16. <c:otherwise>

17. Income is undetermined...

18. </c:otherwise>

19. </c:choose>

20. </body>

21. </html>

This will produce the following result:

1. Your income is : 16000

2. Income is very good.

(ii) Demonstrate with suitable example for SQL and XML tags in

JSTL.

 JSTL SQL

The <sql:setDataSource> tag sets the data source configuration variable or saves the

data-source information in a scoped variable that can be used as input to the other JSTL

database actions.

Attribute

The <sql:setDataSource> tag has the following attributes −

Attribute Description

driver Name of the JDBC driver class to be

registered

url JDBC URL for the database

connection

user Database username

password Database password

password Database password

dataSource Database prepared in advance

var
Name of the variable to represent the

database

scope
Scope of the variable to represent the

database

Example

Consider the following information about your MySQL database setup −

 We are using JDBC MySQL driver.

 We are going to connect to TEST database on local machine.

 We would use user_id and mypassword to access TEST database.

All the above parameters will vary based on your MySQL or any other database setup.

Considering the above parameters, following example uses the setDataSource tag −

<%@ taglib uri = "http://java.sun.com/jsp/jstl/core" prefix = "c" %>

<%@ taglib uri = "http://java.sun.com/jsp/jstl/sql" prefix = "sql"%>

<html>

 <head>

 <title>JSTL sql:setDataSource Tag</title>

 </head>

 <body>

 <sql:setDataSource var = "snapshot" driver = "com.mysql.jdbc.Driver"

 url = "jdbc:mysql://localhost/TEST"

 user = "user_id" password = "mypassword"/>

 <sql:query dataSource = "${snapshot}" sql = "..." var = "result" />

 </body>

</html>

JSTL XML

<x:parse> Tag

The <x:parse> tag is used for parse the XML data specified either in the tag body or an attribute. It is

used for parse the xml content and the result will stored inside specified variable.

The syntax used for including the <x:parse> tag is:

 <x:parse attributes> body content </x:parse>

EXAMPLE

Let us put the following content in novels.xml file:

1. <books>

2. <book>

3. <name>Three mistakes of my life</name>

4. <author>Chetan Bhagat</author>

5. <price>200</price>

6. </book>

7. <book>

8. <name>Tomorrow land</name>

9. <author>NUHA</author>

10. <price>2000</price>

11. </book>

12. </books>

 index.jsp

(IN the same directory)

1. <%@ taglib prefix="c" uri="http://java.sun.com/jsp/jstl/core" %>

2. <%@ taglib prefix="x" uri="http://java.sun.com/jsp/jstl/xml" %>

3.

4. <html>

5. <head>

6. <title>x:parse Tag</title>

7. </head>

8. <body>

9. <h2>Books Info:</h2>

10. <c:import var="bookInfo" url="novels.xml"/>

11.

12. <x:parse xml="${bookInfo}" var="output"/>

13. <p>First Book title: <x:out select="$output/books/book[1]/name" /></p>

14. <p>First Book price: <x:out select="$output/books/book[1]/price" /></p>

15. <p>Second Book title: <x:out select="$output/books/book[2]/name" /></p>

16. <p>Second Book price: <x:out select="$output/books/book[2]/price" /></p>

17.

18. </body>

19. </html>

Output:

Books Info:

First Book title: Three mistakes of my life

First Book price: 200

Second Book title: Tomorrow land

Second Book price: 2000

14.

Define HTML and JSP. Use the same and design a scientific calculator.

Calculator.jsp
<%@ taglib uri="http://java.sun.com/jsp/jstl/core" prefix="c" %>
<html>
 <head>
 <title>Calculator</title>

 <style>
 h1 {
 font-family: Arial;
 font-size: 14pt;
 font-weight: normal;
 }
 td input {
 font-family: Arial;
 font-size: 10pt;
 width: 30px;
 }

 input.double {
 width: 60px;
 }

 input.doubleheight {
 height: 48px;
 }

 input.display {
 border: 1px solid black;
 readonly: true;
 width: 120px;
 padding: 2px;
 }
 </style>
 </head>

 <body>
 <h1>Calculator</h1>

 <form method="GET" action="calculate.html">
 <table border="0" cellpadding="0" cellspacing="0">
 <tr>
 <td colspan="4">
 <input class="display" type="text" id="display" value="<c:out
value="${displayAmount}"/>" readonly/>
 </td>
 </tr>
 <tr>
 <td><input type="submit" name="button" id="btn-7"
value="7"/></td>
 <td><input type="submit" name="button" id="btn-8"
value="8"/></td>
 <td><input type="submit" name="button" id="btn-9"
value="9"/></td>
 <td><input type="submit" name="button" id="btn-/"
value="/"/></td>

 <td><input type="submit" name="button" id="btn-C"
value="C"/></td>
 </tr>
 <tr>
 <td><input type="submit" name="button" id="btn-4"
value="4"/></td>
 <td><input type="submit" name="button" id="btn-5"
value="5"/></td>
 <td><input type="submit" name="button" id="btn-6"
value="6"/></td>
 <td><input type="submit" name="button" id="btn-*"
value="*"/></td>
 <td></td>
 </tr>
 <tr>
 <td><input type="submit" name="button" id="btn-1"
value="1"/></td>
 <td><input type="submit" name="button" id="btn-2"
value="2"/></td>
 <td><input type="submit" name="button" id="btn-3"
value="3"/></td>
 <td><input type="submit" name="button" id="btn--" value="-
"/></td>
 <td rowspan="2"><input class="doubleheight" type="submit"
name="button" id="btn-=" value="="/></td>
 </tr>
 <tr>
 <td colspan="2"><input class="double" type="submit"
name="button" id="btn-0" value="0"/></td>
 <td><input type="button" name="button" id="btn-."
value="."/></td>
 <td><input type="submit" name="button" id="btn-+"
value="+"/></td>
 </tr>
 </table>
 </form>
 </body>
</html>

PART – C

Q.No Questions

1.

Design a HTML forms by embedding JSP code for submission of a resume to a job

portal website with appropriate database connectivity.

2.

Evaluate a complete query application for books database using JDBC.

3.
Write a program that allows the user to select a favourite programming language and

post the choice to the server. The response is a web page in which the user can click a

link to view a list of book recommendations. The cookies previously stored on the

client are read by the servlet and form a web page containing the book

recommendation. Use servlet cookies and HTML.

4.
Develop a JSP program to display the grade of a student by accepting the marks of five

subjects.

CS8651 Internet Programming – 2017Reg

PHP: An introduction to PHP – Using PHP – Variables – Program control – Built-in functions –

Form Validation – Regular Expressions – File handling – Cookies – Connecting to Database; XML:

Basic XML – Document Type Definition – XML Schema DOM and Presenting XML, XML Parsers

and Validation, XSL and XSLT Transformation, News Feed (RSS and ATOM).

Internet Programming – UNIT-IV

Q.No Questions

1.

Define PHP. List the features.

What is PHP?

 PHP is an acronym for "PHP: Hypertext Preprocessor"

 PHP is a widely-used, open source scripting language

 PHP scripts are executed on the server
 PHP is free to download and use

PHP is an amazing and popular language!

It is powerful enough to be at the core of the biggest blogging system on
the web (WordPress)!

It is deep enough to run the largest social network (Facebook)!
It is also easy enough to be a beginner's first server side language!

What is a PHP File?

 PHP files can contain text, HTML, CSS, JavaScript, and PHP code

 PHP code is executed on the server, and the result is returned to the
browser as plain HTML

 PHP files have extension ".php"

What Can PHP Do?

 PHP can generate dynamic page content
 PHP can create, open, read, write, delete, and close files on the

server
 PHP can collect form data

 PHP can send and receive cookies
 PHP can add, delete, modify data in your database

 PHP can be used to control user-access
 PHP can encrypt data

With PHP you are not limited to output HTML. You can output images, PDF

files, and even Flash movies. You can also output any text, such as XHTML

and XML.

2.

List the rules for creating variables in PHP.

PHP Variables

A variable can have a short name (like x and y) or a more descriptive

name (age, carname, total_volume).

Rules for PHP variables:

 A variable starts with the $ sign, followed by the name of the

variable
 A variable name must start with a letter or the underscore character

 A variable name cannot start with a number
 A variable name can only contain alpha-numeric characters and

underscores (A-z, 0-9, and _)
 Variable names are case-sensitive ($age and $AGE are two different

variables)
 PHP variable names are case-sensitive

3.

Illustrate a PHP program to determine the type of browser that a web

client is using.

Display the Browser – PHP Script

The following PHP function can be used to display the browser:

1. <?php

2.

3. function get_the_browser()

4. {

5.

6. if(strpos($_SERVER['HTTP_USER_AGENT'], 'MSIE') !== false)

7. return 'Internet explorer';

8. elseif(strpos($_SERVER['HTTP_USER_AGENT'], 'Trident') !== false)

9. return 'Internet explorer';

10. elseif(strpos($_SERVER['HTTP_USER_AGENT'], 'Firefox') !== false)

11. return 'Mozilla Firefox';

12. elseif(strpos($_SERVER['HTTP_USER_AGENT'], 'Chrome') !== false)

13. return 'Google Chrome';

14. elseif(strpos($_SERVER['HTTP_USER_AGENT'], 'Opera Mini') !== false)

15. return "Opera Mini";

16. elseif(strpos($_SERVER['HTTP_USER_AGENT'], 'Opera') !== false)

17. return "Opera";

18. elseif(strpos($_SERVER['HTTP_USER_AGENT'], 'Safari') !== false)

19. return "Safari";

20. else

21. return 'Other';

22.

23. }

24.

25.

26. ?>

In the above code, we are checking each possible browser that may be and

return the browser name. Here we haven’t checked the Mozilla because of

most of the browser using this as the user agent string.

Below is how to display the browser name on our web page:

Echo get_the_browser();

4.

Name any four built-in functions in PHP.

PHP Reference

The PHP reference contains different categories of all PHP functions and

constants, along with examples.

Array Calendar Date Directory Error File

system Filter FTP Libxml Mail Math

Misc MySQLi Network SimpleXML Stream

String XML Parser Zip Timezones

5.

Infer when should the super global arrays in PHP be used?

Superglobals were introduced in PHP 4.1.0, and are built-in variables

that are always available in all scopes.

PHP Global Variables - Superglobals

https://www.w3schools.com/php/php_ref_array.asp
https://www.w3schools.com/php/php_ref_calendar.asp
https://www.w3schools.com/php/php_ref_date.asp
https://www.w3schools.com/php/php_ref_directory.asp
https://www.w3schools.com/php/php_ref_error.asp
https://www.w3schools.com/php/php_ref_filesystem.asp
https://www.w3schools.com/php/php_ref_filesystem.asp
https://www.w3schools.com/php/php_ref_filter.asp
https://www.w3schools.com/php/php_ref_ftp.asp
https://www.w3schools.com/php/php_ref_libxml.asp
https://www.w3schools.com/php/php_ref_mail.asp
https://www.w3schools.com/php/php_ref_math.asp
https://www.w3schools.com/php/php_ref_misc.asp
https://www.w3schools.com/php/php_ref_mysqli.asp
https://www.w3schools.com/php/php_ref_network.asp
https://www.w3schools.com/php/php_ref_simplexml.asp
https://www.w3schools.com/php/php_ref_stream.asp
https://www.w3schools.com/php/php_ref_string.asp
https://www.w3schools.com/php/php_ref_xml.asp
https://www.w3schools.com/php/php_ref_zip.asp
https://www.w3schools.com/php/php_ref_timezones.asp

Some predefined variables in PHP are "superglobals", which means that

they are always accessible, regardless of scope - and you can access them

from any function, class or file without having to do anything special.

The PHP superglobal variables are:

 $GLOBALS
 $_SERVER
 $_REQUEST

 $_POST
 $_GET

 $_FILES
 $_ENV

 $_COOKIE
 $_SESSION

Which super global array in PHP would contain a HTML form’s POST data?

PHP Superglobal - $_POST

Super global variables are built-in variables that are always available in
all scopes.

PHP $_POST

PHP $_POST is a PHP super global variable which is used to collect form

data after submitting an HTML form with method="post". $_POST is also

widely used to pass variables.

The example below shows a form with an input field and a submit button.

When a user submits the data by clicking on "Submit", the form data is
sent to the file specified in the action attribute of the <form> tag. In this

example, we point to the file itself for processing form data. If you wish to
use another PHP file to process form data, replace that with the filename
of your choice. Then, we can use the super global variable $_POST to

collect the value of the input field:

Example

<html>

<body>

<form method="post" action="<?php echo $_SERVER['PHP_SELF'];?>">

 Name: <input type="text" name="fname">

 <input type="submit">

</form>

<?php

if ($_SERVER["REQUEST_METHOD"] == "POST") {

 // collect value of input field

 $name = $_POST['fname'];

 if (empty($name)) {

 echo "Name is empty";

 } else {

 echo $name;

 }

}

?>

</body>

</html>

6.

Classify the difference between echo() & print() functions.

PHP echo and print Statements

With PHP, there are two basic ways to get output: echo and print.

echo and print are more or less the same. They are both used to output data to the screen.

The differences are small:

The PHP echo Statement

The PHP print Statement

 echo has no return value

 echo can take multiple parameters

 echo is marginally faster than print.

 print has a return value of 1 so it can

be used in expressions.

 print can take one argument

The echo statement can be used with or

without parentheses: echo or echo().

The print statement can be used with or

without parentheses: print or print().

Example-1

<?php

echo "<h2>PHP is Fun!</h2>";

echo "Hello world!
";

echo "I'm about to learn PHP!
";

echo "This ", "string ", "was ", "made ", "with

multiple parameters.";

?>

Example-1

<?php

print "<h2>PHP is Fun!</h2>";

print "Hello world!
";

print "I'm about to learn PHP!";

?>

PHP is Fun!

Hello world!

PHP is Fun!

Hello world!

Example-2
<?php

$txt1 = "Learn PHP";

$txt2 = "W3Schools.com";

$x = 5;

$y = 4;

echo "<h2>" . $txt1 . "</h2>";

echo "Study PHP at " . $txt2 . "
";

echo $x + $y;

?>

Example-2

<?php

$txt1 = "Learn PHP";

$txt2 = "W3Schools.com";

$x = 5;

$y = 4;

print "<h2>" . $txt1 . "</h2>";

print "Study PHP at " . $txt2 . "
";

print $x + $y;

?>

Learn PHP

Study PHP at W3Schools.com

9

Learn PHP

Study PHP at W3Schools.com

9

7.

List any two advantages of XML document.

Using XML to exchange information offers many benefits.
Advantages of XML include the following:

 XML uses human, not computer, language. XML is readable and
understandable, even by novices, and no more difficult to code than HTML.

 XML is completely compatible with Java™ and 100% portable. Any
application that can process XML can use your information, regardless of
platform.

 XML is extendable. Create your own tags, or use tags created by others,
that use the natural language of your domain, that have the attributes you
need, and that makes sense to you and your users.

8.

Give the difference between DTD and XML schema for defining XML

document structure with appropriate examples.

DTD vs XSD

There are many differences between DTD (Document Type Definition) and XSD (XML

Schema Definition). In short, DTD provides less control on XML structure whereas

XSD (XML schema) provides more control.

The important differences are given below:

No. DTD(Document Type

Definition)
XSD(XML Schema Definition)

1) DTD stands

for Document Type

Definition.

XSD stands for XML Schema

Definition.

2) DTDs are derived

from SGML syntax.

XSDs are written in XML.

3) DTD doesn't support

datatypes.

XSD supports datatypes for

elements and attributes.

4) DTD doesn't support

namespace.

XSD supports namespace.

5) DTD doesn't define

order for child elements.

XSD defines order for child

elements.

6) DTD is not extensible. XSD is extensible.

7) DTD is not simple to

learn.

XSD is simple to

learn because you don't need

to learn new language.

8) DTD provides less

control on XML structure.

XSD provides more

control on XML structure.

9.

Analyze about Query String in PHP.

Query string

The information can be sent across the web pages. This information is
called query string. This query string can be passed from one page to
another by appending it to the address of the page. You can pass more
than one query string by inserting the & sign between the query strings.
A query string can contain two things: the query string ID and its value.
The query string passed across the web pages is stored in
$_REQUEST, $_GET, or $_POST variable.

Query string handling in PHP

Query strings

To access the data in a query string you can use the $_GET global array. Each element in

this array has a key which is the name of the query string variable and a value which is the

value of that variable.

my link

This link loads the page mypage.php with two variables variable1 and variable2 with

values value1 and value2 respectively.

echo $_GET['variable1'];

echo $_GET['variable2'];

// outputs:

//value1

//value2

Form data

The get method of forms sends the data to a page via a query string.

<form name="form1" id="form1" method="get" action="">

 <input name="textbox" id="textbox" type="text" value="value1" />

 <input name="textbox2" id="textbox2" type="text" value="value2" />

 <input type="submit" name="submitbutton" id="submitbutton" value="Submit" />

</form>

This form passes the value of the two text boxes to the page myform.php.

print_r($_GET);

// outputs:

// Array (

// [textbox] => value1

// [textbox2] => value2

// [submitbutton] => Submit

//)

echo $_GET['textbox'];

//outputs: value1

10.

Show an example for XML namespace.

A Namespace is a set of unique names. Namespace is a mechanisms by which
element and attribute name can be assigned to a group. The Namespace is
identified by URI(Uniform Resource Identifiers).

Namespace Declaration

A Namespace is declared using reserved attributes. Such an attribute name must
either be xmlns or begin with xmlns: shown as below −

<element xmlns:name = "URL">

Syntax

 The Namespace starts with the keyword xmlns.

 The word name is the Namespace prefix.

 The URL is the Namespace identifier.

Example

Namespace affects only a limited area in the document. An element containing the
declaration and all of its descendants are in the scope of the Namespace.
Following is a simple example of XML Namespace −

<?xml version = "1.0" encoding = "UTF-8"?>

<cont:contact xmlns:cont = "www.tutorialspoint.com/profile">

 <cont:name>Tanmay Patil</cont:name>

 <cont:company>TutorialsPoint</cont:company>

 <cont:phone>(011) 123-4567</cont:phone>

</cont:contact>

Here, the Namespace prefix is cont, and the Namespace identifier (URI)
as www.tutorialspoint.com/profile. This means, the element names and attribute
names with the cont prefix (including the contact element), all belong to
the www.tutorialspoint.com/profile namespace.

11.

Define XML parse tree.

An XML document is always descriptive. The tree structure is often referred to as XML

Tree and plays an important role to describe any XML document easily.

The tree structure contains root (parent) elements, child elements and so on. By using tree

structure, you can get to know all succeeding branches and sub-branches starting from the

root. The parsing starts at the root, then moves down the first branch to an element, take

the first branch from there, and so on to the leaf nodes.

Example

Following example demonstrates simple XML tree structure −

<?xml version = "1.0"?>

<Company>

 <Employee>

 <FirstName>Tanmay</FirstName>

 <LastName>Patil</LastName>

 <ContactNo>1234567890</ContactNo>

 <Email>tanmaypatil@xyz.com</Email>

 <Address>

 <City>Bangalore</City>

 <State>Karnataka</State>

 <Zip>560212</Zip>

 </Address>

 </Employee>

</Company>

Following tree structure represents the above XML document −

In the above diagram, there is a root element named as <company>. Inside that, there is

one more element <Employee>. Inside the employee element, there are five branches

named <FirstName>, <LastName>, <ContactNo>, <Email>, and <Address>. Inside the

<Address> element, there are three sub-branches, named <City> <State> and <Zip>.

12.

Identify why XSLT is an important tool for development of web

applications.

What is XSLT

XSLT, Extensible Stylesheet Language Transformations, provides the ability to
transform XML data from one format to another automatically.

How XSLT Works

An XSLT stylesheet is used to define the transformation rules to be applied on the
target XML document. XSLT stylesheet is written in XML format. XSLT Processor
takes the XSLT stylesheet and applies the transformation rules on the target XML
document and then it generates a formatted document in the form of XML, HTML,
or text format. This formatted document is then utilized by XSLT formatter to
generate the actual output which is to be displayed to the end-user.

Advantages

Here are the advantages of using XSLT −

 Independent of programming. Transformations are written in a separate xsl file which
is again an XML document.

 Output can be altered by simply modifying the transformations in xsl file. No need to
change any code. So Web designers can edit the stylesheet and can see the change
in the output quickly.

13.

Assess the data types in XML schema.

You can define XML schema elements in the following ways −

Simple Type

Simple type element is used only in the context of the text. Some of the predefined
simple types are: xs:integer, xs:boolean, xs:string, xs:date. For example −

<xs:element name = "phone_number" type = "xs:int" />

Complex Type

A complex type is a container for other element definitions. This allows you to
specify which child elements an element can contain and to provide some structure
within your XML documents. For example −

<xs:element name = "Address">

 <xs:complexType>

 <xs:sequence>

 <xs:element name = "name" type = "xs:string" />

 <xs:element name = "company" type = "xs:string" />

 <xs:element name = "phone" type = "xs:int" />

 </xs:sequence>

 </xs:complexType>

</xs:element>

14.

Explain DTD for XML Schemas.

A document type definition (DTD) is a set of markup declarations that define a document
type for a SGML-family markup language (GML, SGML, XML, HTML).

A DTD defines the valid building blocks of an XML document. It defines the document
structure with a list of validated elements and attributes. A DTD can be declared inline inside
an XML document, or as an external reference.

XML DTD schema example

An example of a very simple external XML DTD to describe the schema of a list of

persons might consist of:

<!ELEMENT people_list (person)*>

<!ELEMENT person (name, birthdate?, gender?, socialsecuritynumber?)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT birthdate (#PCDATA)>

<!ELEMENT gender (#PCDATA)>

<!ELEMENT socialsecuritynumber (#PCDATA)>

Taking this line by line:

1. people_list is a valid element name, and an instance of such an element contains

any number of person elements. The * denotes there can be 0 or

more person elements within the people_list element.

2. person is a valid element name, and an instance of such an element contains one

element named name , followed by one named birthdate (optional),

then gender (also optional) and socialsecuritynumber (also optional).

The ? indicates that an element is optional. The reference to the name element

name has no ? , so a person element must contain a name element.

3. name is a valid element name, and an instance of such an element contains

"parsed character data" (#PCDATA).

4. birthdate is a valid element name, and an instance of such an element contains

parsed character data.

5. gender is a valid element name, and an instance of such an element contains

parsed character data.

6. socialsecuritynumber is a valid element name, and an instance of such an element

contains parsed character data.

An example of an XML file that uses and conforms to this DTD follows. The DTD is

referenced here as an external subset, via the SYSTEM specifier and a URI. It assumes

that we can identify the DTD with the relative URI reference "example.dtd"; the

https://en.wikipedia.org/wiki/SGML
https://en.wikipedia.org/wiki/Markup_language
https://en.wikipedia.org/wiki/IBM_Generalized_Markup_Language
https://en.wikipedia.org/wiki/SGML
https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/HTML

"people_list" after "!DOCTYPE" tells us that the root tags, or the first element defined in

the DTD, is called "people_list":

<?xml version="1.0" encoding="UTF-8" standalone="no"?>

<!DOCTYPE people_list SYSTEM "example.dtd">

<people_list>

 <person>
 <name>Fred Bloggs</name>

 <birthdate>2008-11-27</birthdate>

 <gender>Male</gender>

 </person>

</people_list>

15.

Evaluate the process of displaying XML document in browser.

Display an XML Document in a Web Browser

Displaying XML Using CSS

XML stands for Extensible Markup Language. It is a dynamic markup language. It is

used to transform data from one form to another form.

An XML file can be displayed using two ways. These are as follows :-

1. Cascading Style Sheet

2. Extensible Stylesheet Language Transformation

Displaying XML file using CSS :
CSS can be used to display the contents of the XML document in a clear and precise

manner. It gives the design and style to whole XML document.

 Basic steps in defining a CSS style sheet for XML :
For defining the style rules for the XML document, the following things shoulde be

done :-

1. Define the style rules for the text elements such as font-size, color, font-

weight, etc.

2. Define each element either as a block, inline or list element, using the display

property of CSS.

3. Identify the titles and bold them.

 Linking XML with CSS :
In order to display the XML file using CSS, link XML file with CSS. Below is the

syntax for linking the XML file with CSS:

<?xml-stylesheet type="text/css" href="name_of_css_file.css"?>

 Example 1.
In this example, the XML file is created that contains the information about five

books and displaying the XML file using CSS.

XML file :

<?xml version="1.0" encoding="UTF-8"?>
<?xml-stylesheet type="text/css" href="Rule.css"?>
<books>

 <heading>Welcome To GeeksforGeeks </heading>
 <book>
 <title>Title -: Web Programming</title>
 <author>Author -: Chrisbates</author>
 <publisher>Publisher -: Wiley</publisher>
 <edition>Edition -: 3</edition>
 <price> Price -: 300</price>
 </book>
 <book>
 <title>Title -: Internet world-wide-web</title>
 <author>Author -: Ditel</author>
 <publisher>Publisher -: Pearson</publisher>
 <edition>Edition -: 3</edition>
 <price>Price -: 400</price>
 </book>

 </books>

In the above example, Books.xml is linked with Rule.css which contains the

corresponding style sheet rules.

CSS FILE :

books {
 color: white;
 background-color : gray;
 width: 100%;
}
 heading {
 color: green;
 font-size : 40px;
 background-color : powderblue;
}
 heading, title, author, publisher, edition, price {
 display : block;
}
 title {
 font-size : 25px;
 font-weight : bold;
}

 Output :

16. Summarize about the need for Namespace in XML.

XML namespaces are used for providing uniquely named elements and attributes in
an XML document. They are defined in a W3C recommendation.[1][2] An XML instance may
contain element or attribute names from more than one XML vocabulary. If each vocabulary
is given a namespace, the ambiguity between identically named elements or attributes can be
resolved.

How to get rid of name conflict?

1) By Using a Prefix

You can easily avoid the XML namespace by using a name prefix.

1. <h:table>

2. <h:tr>

3. <h:td>Aries</h:td>

4. <h:td>Bingo</h:td>

5. </h:tr>

6. </h:table>

7. <f:table>

8. <f:name>Computer table</f:name>

9. <f:width>80</f:width>

10. <f:length>120</f:length>

11. </f:table>

Note: In this example, you will get no conflict because both the tables have

specific names.

2) By Using xmlns Attribute

You can use xmlns attribute to define namespace with the following syntax:

1. <element xmlns:name = "URL">

Let's see the example:

1. <root>

2. <h:table xmlns:h="http://www.abc.com/TR/html4/">

3. <h:tr>

4. <h:td>Aries</h:td>

5. <h:td>Bingo</h:td>

6. </h:tr>

7. </h:table>

8.

9. <f:table xmlns:f="http://www.xyz.com/furniture">

10. <f:name>Computer table</f:name>

11. <f:width>80</f:width>

https://en.wikipedia.org/wiki/Data_element
https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/W3C
https://en.wikipedia.org/wiki/W3C_recommendation
https://en.wikipedia.org/wiki/XML_namespace#cite_note-1
https://en.wikipedia.org/wiki/XML_namespace#cite_note-1
https://en.wikipedia.org/wiki/Namespace

12. <f:length>120</f:length>

13. </f:table>

14. </root>

In the above example, the <table> element defines a namespace and when a

namespace is defined for an element, the child elements with the same prefixes are
associated with the same namespace.

17.

Analyze on ATOM in RSS.

What is Atom 1.0 ?

Atom is the name of an XML-based Web content and metadata syndication format,
and an application-level protocol for publishing and editing Web resources
belonging to periodically updated websites.

Atom is a relatively recent spec and is much more robust and feature-rich than
RSS. For instance, where RSS requires descriptive fields such as title and link
only in item breakdowns, Atom requires these things for both items and the full
Feed.

All Atom Feeds must be well-formed XML documents, and are identified with
the application/atom+xml media type.

Structure of an Atom 1.0 Feed

A Feed consists of some metadata, followed by any number of entries. Here is a
basic structure of an Atom 1.0 Feed.

<?xml version="1.0"?>

<feed xmlns="http://www.w3.org/2005/Atom">

 <title>...</title>

 <link>...</link>

 <updated>...</updated>

 <author>

 <name>...</name>

 </author>

 <id>...</id>

 <entry>

 <title>...</title>

 <link>...</link>

 <id>...</id>

 <updated>...</updated>

 <summary>...</summary>

 </entry>

</feed>

http://www.w3.org/TR/REC-xml

Atom 1.0 Feed Tags

An Atom 1.0 Feed Document will be constructed of the following two elements:

 <feed> Elements

 <entry> Elements

18.

Summarize the advantage of RSS documents?

RSS - Advantages

RSS is taking off so quickly because people are liking it. RSS is easy to use and
it has advantages for a publisher as well as for a subscriber. Here we have listed
out a few advantages of RSS for subscribers as well as for publishers.

Advantages for Subscribers

RSS subscribers are the people who subscribe to read a published Feed. Here
are some of the advantages of RSS Feeds for subscribers:

 All news at one place: You can subscribe to multiple news groups and then you can
customize your reader to have all the news on a single page. It will save you a lot of
time.

 News when you want it: Rather than waiting for an e-mail, you go to your RSS reader
when you want to read a news. Furthermore, RSS Feeds display more quickly than
information on web-sites, and you can read them offline if you prefer.

 Get the news you want: RSS Feed comes in the form of headlines and a brief
description so that you can easily scan the headlines and click only those stories that
interest you.

 Freedom from e-mail overload: You are not going to get any email for any news or
blog update. You just go to your reader and you will find updated news or blog
automatically whenever there is a change on the RSS server.

 Easy republishing: You may be both a subscriber and a publisher. For example, you
may have a web-site that collects news from various other sites and then republishes
it. RSS allows you to easily capture that news and display it on your site.

Advantages for Publishers

RSS publishers are the people who publish their content through RSS feed. We
would suggest you to use RSS:

 if you want to get your message out and easily,

 if you want people to see what you publish, and

 if you want your news to bring people back to your site.

Here are some of the advantages of RSS if you publish on the Web:

https://www.tutorialspoint.com/rss/feed.htm
https://www.tutorialspoint.com/rss/entry.htm

 Easier publishing: RSS is really simple publishing. You don't have to maintain a
database of subscribers to send your information to them, instead they will access
your Feed using a reader and will get updated content automatically.

 A simpler writing process: If you have a new content on your web site, you only need
to write an RSS Feed in the form of titles and short descriptions, and link back to your
site.

 An improved relationship with your subscribers: Because people subscribe from
their side, they don't feel as if you are pushing your content on them.

 The assurance of reaching your subscribers: RSS is not subject to spam filters,
your subscribers get the Feeds, which they subscribe to and nothing more.

 Links back to your site: RSS Feeds always include links back to a website. It directs
a lot of traffic towards your website.

 Relevance and timeliness: Your subscribers always have the latest information from
your site.

19.

Rewrite the declaration for elements in XML.

20.

How would you prepare the steps to get the RSS file on web?

Uploading an RSS Feed

Here are the simple steps to put your RSS Feed on the web.

 First decide which version of RSS Feed you are going to use for your site. We would
recommend you to use the latest version available.

 Create your RSS Feed in a text file with extension either .xml or .rdf. Upload this file
on your web server.

 You should validate your RSS Feed before making it live. Check the next chapter on
RSS Feed Validation.

 Create a link on your Web Pages for the RSS Feed file. You will use a small yellow

button for the link that says either or .

Now, your RSS Feed is online and people can start using it. But there are ways to
promote your RSS Feed so that more number of people can use your RSS Feed.

Promote Your RSS Feed

 Submit your RSS Feed to the RSS Feed Directories. There are many directories
available on the web, where you can register your Feed. Some of them are given here:

o Syndic8: Over 300,000 Feeds listed.

o Daypop: Over 50,000 feeds listed.

o Newsisfree: Over 18,000 Feeds.

 Register your Feed with the major search engines. Similar to your web pages, you can
add your Feed as well with the following major search engines.

o Yahoo - http://publisher.yahoo.com/promote.php

http://www.elsindi8.com/
http://websearch.about.com/od/enginesanddirectories/a/daypop.htm
http://www.newsisfree.com/
http://publisher.yahoo.com/promote.php

o Google - http://www.google.com/webmasters/add.html

o Bing - http://www.bing.com/toolbox/submit-site-url

Keeping Up-To-Date Feed

As we have explained earlier, RSS Feed makes sense for the site which are
changing their content very frequently, for example, any news or blogging sites.

So now, you have got RSS Feed buttons from Google, Yahoo, and MSN. You
must make sure to update your content frequently and that your RSS Feed is
constantly available.

PART-B

1.

(i) Describe about the introduction and installation of PHP.

Introduction to PHP

PHP is one of the most widely used server side scripting language for web
development. Popular websites like Facebook, Yahoo, Wikipedia etc are
developed using PHP.

PHP is so popular because it's very simple to learn, code and deploy on server,
hence it has been the first choice for beginners since decades.

Uses of PHP

To further fortify your trust in PHP, here are a few applications of this amazing
scripting language:

1. It can be used to create Web applications like Social Networks(Facebook, Digg),

Blogs(Wordpress, Joomla), eCommerce websites(OpenCart, Magento etc.) etc.

2. Common Line Scripting. You can write PHP scripts to perform different

operations on any machine, all you need is a PHP parser for this.

3. Create Facebook applications and easily integrate Facebook plugins in your

website, using Facebook's PHP SDK. Check this link for more information.

4. Sending Emails or building email applications because PHP provides with a

robust email sending function.

5. Wordpress is one of the most used blogging(CMS) platform in the World, and if

you know PHP, you can try a hand in Wordpress plugin development.

http://www.google.com/webmasters/add.html
http://www.bing.com/toolbox/submit-site-url
https://developers.facebook.com/docs/reference/php

Manual Installation

1. Step 1: Download the files. Download the latest PHP 5 ZIP package from
www.php.net/downloads.php. ...

2. Step 2: Extract the files. ...

3. Step 3: Configure php. ...

4. Step 4: Add C:\php to the path environment variable. ...

5. Step 5: Configure PHP as an Apache module. ...

6. Step 6: Test a PHP file.

(ii) Design simple calculator using PHP.

Calculator.php

<!DOCTYPE html>
<html>

 <head>

 <title>Simple Calculator In PHP | Webdevtrick.com</title>

 <meta charset="utf-8">

 <meta http-equiv="X-UA-Compatible" content="IE=edge">

 <meta name="viewport" content="width=device-width, initial-scale=1">

 <link

href="https://maxcdn.bootstrapcdn.com/bootstrap/3.3.5/css/bootstrap.min.css"

rel="stylesheet">

 </head>

 <body>

 <div class="container" style="margin-top: 50px">

 <?php

 // If the submit button has been pressed

 if(isset($_POST['submit']))

 {

 // Check number values

 if(is_numeric($_POST['number1']) && is_numeric($_POST['number2']))

 {

 // Calculate total

 if($_POST['operation'] == 'plus')

 {

 $total = $_POST['number1'] + $_POST['number2'];

 }

 if($_POST['operation'] == 'minus')

 {

 $total = $_POST['number1'] - $_POST['number2'];

 }

 if($_POST['operation'] == 'multiply')

 {

 $total = $_POST['number1'] * $_POST['number2'];

 }

 if($_POST['operation'] == 'divided by')

 {

 $total = $_POST['number1'] / $_POST['number2'];

 }

 // Print total to the browser

 echo "<h1>{$_POST['number1']} {$_POST['operation']}

{$_POST['number2']} equals {$total}</h1>";

 } else {

 // Print error message to the browser

 echo 'Numeric values are required';

 }

 }

 // end PHP. Code by webdevtrick.com

 ?>

 <!-- Calculator form by webdevtrick.com -->

 <form method="post" action="calculator.php">

 <input name="number1" type="text" class="form-control" style="width:

150px; display: inline" />

 <select name="operation">

 <option value="plus">Plus</option>

 <option value="minus">Minus</option>

 <option value="multiply">Multiply</option>

 <option value="divided by">Devide</option>

 </select>

 <input name="number2" type="text" class="form-control" style="width:

150px; display: inline" />

 <input name="submit" type="submit" value="Calculate" class="btn btn-

primary" />

 </form>

 </div>

 </body>

</html>

?>

2.

Explain about control statements and data types in PHP with

example.

Control Statements in PHP with Examples

 Like any other languages, PHP is built out of a series of control statements. The control statement can

be an assignment, a function call, a loop, a conditional statement or even a statement that does nothing

or an empty statement.

In PHP we have the following conditional statements:

if statement – We use this control statement to execute some code only if a specified condition is true.

if…else statement – We use this control statement to execute some code if a condition is true and

another code if the condition is false.

if…elseif….else statement – We use this control statement to select one of several blocks of code to

be executed

switch statement – We use this control statement to select one of many blocks of code to be executed

1. The if Statement

Use the if statement to execute some code

only if a specified condition is true.

The expression is evaluated to its Boolean

value. If expression evaluates to TRUE,

PHP will execute statement, and if it

evaluates to FALSE – it’ll ignore it

Syntax

if (condition) {

code to be executed if condition is true;

}

The following example would display ” A is

bigger than B” if $a is bigger than $b:

<?php

if ($a > $b)

echo "A is bigger than B";

?>

2. The if…else Statement

elseif, as its name suggests, is a combination of

if and else. Like else, it extends an if statement

to execute a different statement in case the

original if expression evaluates to FALSE.

However, unlike else, it will execute that

alternative expression only if the elseif

conditional expression evaluates to TRUE.

if (condition)

code to be executed if condition is true;

else

code to be executed if condition is false;

For example, the following code would display

a is bigger than b, a equal to b or a is smaller

than b:

<?php

if ($a > $b) {

echo "a is bigger than b";

} elseif ($a == $b) {

echo "a is equal to b";

} else {

echo "a is smaller than b";

}

?>

3. The if…elseif….else

Statement

4. The Switch Statement

The switch statement is similar to IF statements

on the same expression. In many occasions,

Use the if….elseif…else statement to select

one of several blocks of code to be executed.

if (condition)

code to be executed if condition is true;

elseif (condition)

code to be executed if condition is true;

else

code to be executed if condition is false;

Note: Note that elseif and else if will only be

considered exactly the same when using

curly brackets as in the above example.

When using a colon to define your if/elseif

conditions, you must not separate else if into

two words, or PHP will fail with a parse

error.

you may want to compare the same variable (or

expression) with many different values, and

execute a different piece of code depending on

which value it equals to. This is exactly what

the switch statement is for.

switch ()

{

case condition1

break;

case condition2

break;

}

For example, the following code would display

$i matched value as 0 or 1 or 2:

<?php

switch ($i) {

case 0:

echo "i equals 0";

case 1:

echo "i equals 1";

case 2:

echo "i equals 2";

}

?>

3.

(i) Create an XML document that marks up various sports and their

descriptions. Use XSLT to tabulate neatly the elements and attributes

of the document.

<?xml version="1.0"?>

-<events league="WC Falun" tournament="2010/2011" template="World Cup"

sport="Cross Country Skiing" ut="2012-09-05" id="821135">

-<event id="866683" status="Finished" round="8001 - 1/1 (Final)" date="2011-03-20

13:15:00" name="10 km Freestyle Handicap Pursuit">

-<results participantname="Marit Bjoergen" participantid="43427">

<result id="9498426" value="1" type="rank"/>

<result id="9498424" value="27:58.0" type="duration"/>

<result id="9505038" value="200" type="points"/>

<result id="9498425" value="" type="comment"/>

<result id="9497448" value="1" type="startnumber"/>

</results>

-<results participantname="Justyna Kowalczyk" participantid="43775">

<result id="9498429" value="2" type="rank"/>

<result id="9498427" value="+1:58.0" type="duration"/>

<result id="9505039" value="160" type="points"/>

<result id="9498428" value="" type="comment"/>

<result id="9497454" value="2" type="startnumber"/>

</results>
</event></events>

(ii) Illustrate a JSP page that enables the user to input the first name

and in response outputs the last name.

POST Method Example Using Form

Below is the main.jsp JSP program to handle the input given by web browser using the

GET or the POST methods.

<html>

 <head>

 <title>Using GET and POST Method to Read Form Data</title>

 </head>

 <body>

 <center>

 <h1>Using POST Method to Read Form Data</h1>

 <p>First Name:

 <%= request.getParameter("first_name")%>

 </p>

 <p>Last Name:

 <%= request.getParameter("last_name")%>

 </p>

 </body>

</html>

Following is the content of the Hello.htm file −

<html>

 <body>

 <form action = "main.jsp" method = "POST">

 First Name: <input type = "text" name = "first_name">

 Last Name: <input type = "text" name = "last_name" />

 <input type = "submit" value = "Submit" />

 </form>

 </body>

</html>

Let us now keep main.jsp and hello.htm in <Tomcat-

installationdirectory>/webapps/ROOT directory. When you

access http://localhost:8080/Hello.htm, you will receive the following output.

First Name:

Last Name:

Try to enter the First and the Last Name and then click the submit button to see the result

on your local machine where tomcat is running.

4.

Create a webserver based chat application using PHP. The

application should provide the following functions Login, Send

message (to one or more contacts) and Receive messages (from one

or more contacts)

5.

(i) Write a PHP program that tests whether an email address is input

correctly. Test your program with both valid and invalid email

addresses.

PHP - Validate Name, E-mail, and URL

Example

<?php

// define variables and set to empty values

$nameErr = $emailErr = $genderErr = $websiteErr = "";

$name = $email = $gender = $comment = $website = "";

if ($_SERVER["REQUEST_METHOD"] == "POST") {

 if (empty($_POST["name"])) {

 $nameErr = "Name is required";

 } else {

 $name = test_input($_POST["name"]);

 // check if name only contains letters and whitespace

 if (!preg_match("/^[a-zA-Z]*$/",$name)) {

 $nameErr = "Only letters and white space allowed";

 }

 }

 if (empty($_POST["email"])) {

 $emailErr = "Email is required";

 } else {

 $email = test_input($_POST["email"]);

 // check if e-mail address is well-formed

 if (!filter_var($email, FILTER_VALIDATE_EMAIL)) {

 $emailErr = "Invalid email format";

 }

 }

 if (empty($_POST["website"])) {

 $website = "";

 } else {

 $website = test_input($_POST["website"]);

 // check if URL address syntax is valid (this regular expression

also allows dashes in the URL)

 if (!preg_match("/\b(?:(?:https?|ftp):\/\/|www\.)[-a-z0-

9+&@#\/%?=~_|!:,.;]*[-a-z0-9+&@#\/%=~_|]/i",$website)) {

 $websiteErr = "Invalid URL";

 }

 }

 if (empty($_POST["comment"])) {

 $comment = "";

 } else {

 $comment = test_input($_POST["comment"]);

 }

 if (empty($_POST["gender"])) {

 $genderErr = "Gender is required";

 } else {

 $gender = test_input($_POST["gender"]);

 }

}

?>

OUTPUT

PHP Form Validation Example

* required field

Name: *

E-mail: *

Website:

Comment:

Gender: Female Male Other *

Submit

Your Input:

Anand M

anand@ibm.com

www.ibm.com

Yhis is a comment

male

6.

Identify and explain about database connectivity illustrate PHP

connectivity with any of the databases.

METHOD FOR: CONNECTING TO MYSQL USING MYSQL

The MySQL Improved extension uses the mysqli class, which
replaces the set of legacy MySQL functions.

To connect to MySQL using the MySQL Improved extension,
follow these steps:

1. Use the following PHP code to connect to MySQL and select a

database. Replace username with your

username, password with your password, and dbname with the

database name:

2. <?php

3. $mysqli = new mysqli("localhost", "username", "password
", "dbname");

?>

<?php
$servername = "localhost";
$username = "username";
$password = "password";

// Create connection
$conn = mysqli_connect($servername, $username, $password);

// Check connection
if (!$conn) {
 die("Connection failed: " . mysqli_connect_error());
}
echo "Connected successfully";
?>

7.

(i) Discuss on methods for using cookies in PHP.

Cookies in PHP

Cookies are used to store the information of a web page in a remote browser, so that when

the same user comes back to that page, that information can be retrieved from the browser

itself.

Uses of cookie

Cookies are often used to perform following tasks:

 Session management: Cookies are widely used to manage user sessions. For

example, when you use an online shopping cart, you keep adding items in the cart

and finally when you checkout, all of those items are added to the list of items you

have purchased. This can be achieved using cookies.

 User identification: Once a user visits a webpage, using cookies, that user can be

remembered. And later on, depending upon the search/visit pattern of the user,

content which the user likely to be visited are served. A good example of this is

'Retargetting'. A concept used in online marketing, where depending upon the

user's choice of content, advertisements of the relevant product, which the user

may buy, are served.

 Tracking / Analytics: Cookies are used to track the user. Which, in turn, is used

to analyze and serve various kind of data of great value, like location, technologies

(e.g. browser, OS) form where the user visited, how long (s)he stayed on various

pages etc.

How to create a cookie in PHP

PHP has a setcookie() function to send a cookie. We will discuss this function in detail

now.

setcookie(name, value, expire, path, domain, secure, httponly)

setcookie() returns boolean.

Example:

Following example shows how to create a cookie in PHP.

<?php

$cookie_value = "w3resource tutorials";

setcookie("w3resource", $cookie_value, time()+3600, "/home/your_usename/",

"example.com", 1, 1);

if (isset($_COOKIE['cookie']))

echo $_COOKIE["w3resource"];

?>

(ii) Give a note on regular expressions.

8.

Summarize in detail the XML schema, built in and user defined data

types.

What is an XML Schema?

An XML Schema describes the structure of an XML document.

The XML Schema language is also referred to as XML Schema Definition

(XSD).

XSD Example

<?xml version="1.0"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="note">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="to" type="xs:string"/>

 <xs:element name="from" type="xs:string"/>

 <xs:element name="heading" type="xs:string"/>

 <xs:element name="body" type="xs:string"/>

 </xs:sequence>

 </xs:complexType>

</xs:element>

</xs:schema>

The purpose of an XML Schema is to define the legal building blocks of an
XML document:

 the elements and attributes that can appear in a document
 the number of (and order of) child elements

 data types for elements and attributes
 default and fixed values for elements and attributes

XSD Simple Elements

XML Schemas define the elements of your XML files.

A simple element is an XML element that contains only text. It cannot

contain any other elements or attributes.

The text can be of many different types like boolean, string, date, etc.), or

it can be a custom type that you can define yourself.

You can also add restrictions (facets) to a data type in order to limit its
content, or you can require the data to match a specific pattern.

The syntax for defining a simple element is:

<xs:element name="xxx" type="yyy"/>

where xxx is the name of the element and yyy is the data type of the

element.

XML Schema has a lot of built-in data types. The most common types are:

 xs:string
 xs:decimal

 xs:integer
 xs:boolean

 xs:date
 xs:time

Example

simple element definitions:

<xs:element name="lastname" type="xs:string"/>
<xs:element name="age" type="xs:integer"/>
<xs:element name="dateborn" type="xs:date"/>

Here are some XML elements:

<lastname>Ronald</lastname>
<age>36</age>
<dateborn>1970-03-27</dateborn>

Simple elements may have a default value which is automatically assigned
to the element when no other value is specified as shown below:

<xs:element name="color" type="xs:string" default="red"/>

How to Define a Complex Element

We can define a complex element in an XML Schema two different ways:

1. The "employee" element can be declared directly by naming the
element, like this:

<xs:element name="employee">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="firstname" type="xs:string"/>
 <xs:element name="lastname" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

2. The "employee" element can have a type attribute that refers to the

name of the complex type to use:

<xs:element name="employee" type="personinfo"/>

<xs:complexType name="personinfo">
 <xs:sequence>
 <xs:element name="firstname" type="xs:string"/>
 <xs:element name="lastname" type="xs:string"/>
 </xs:sequence>
</xs:complexType>

If you use the method described above, several elements can refer to the

same complex type, like this:

<xs:element name="employee" type="personinfo"/>
<xs:element name="student" type="personinfo"/>
<xs:element name="member" type="personinfo"/>

<xs:complexType name="personinfo">
 <xs:sequence>
 <xs:element name="firstname" type="xs:string"/>
 <xs:element name="lastname" type="xs:string"/>
 </xs:sequence>
</xs:complexType>

9.

(i) Demonstrate the building blocks of DOM.

The Document Object Model (DOM) is a cross-platform and language-independent interface
that treats an XML or HTML document as a tree structure wherein each node is
an object representing a part of the document. The DOM represents a document with a
logical tree. Each branch of the tree ends in a node, and each node contains objects. DOM
methods allow programmatic access to the tree; with them one can change the structure,
style or content of a document. Nodes can have event handlers attached to them. Once an
event is triggered, the event handlers get executed.

https://en.wikipedia.org/wiki/Cross-platform
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/HTML
https://en.wikipedia.org/wiki/Tree_structure
https://en.wikipedia.org/wiki/Node_(computer_science)
https://en.wikipedia.org/wiki/Object_(computer_science)

(ii) Classify the types of DTD.

XML DTD

An XML document with correct syntax is called "Well Formed".

An XML document validated against a DTD is both "Well Formed" and
"Valid".

DTD stands for Document Type Definition.

A DTD defines the structure and the legal elements and attributes of an

XML document.

A "Valid" XML document is "Well Formed", as well as it conforms to the

rules of a DTD:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE note SYSTEM "Note.dtd">
<note>
<to>Tove</to>
<from>Jani</from>
<heading>Reminder</heading>

<body>Don't forget me this weekend!</body>
</note>

The DOCTYPE declaration above contains a reference to a DTD file. The

content of the DTD file is shown and explained below.

The purpose of a DTD is to define the structure and the legal elements and
attributes of an XML document:

Note.dtd:

<!DOCTYPE note
[
<!ELEMENT note (to,from,heading,body)>
<!ELEMENT to (#PCDATA)>
<!ELEMENT from (#PCDATA)>
<!ELEMENT heading (#PCDATA)>
<!ELEMENT body (#PCDATA)>
]>

The DTD above is interpreted like this:

 !DOCTYPE note - Defines that the root element of the document is

note
 !ELEMENT note - Defines that the note element must contain the

elements: "to, from, heading, body"
 !ELEMENT to - Defines the to element to be of type "#PCDATA"

 !ELEMENT from - Defines the from element to be of type "#PCDATA"
 !ELEMENT heading - Defines the heading element to be of type

"#PCDATA"
 !ELEMENT body - Defines the body element to be of type

"#PCDATA"

Tip: #PCDATA means parseable character data.

10.

How do you infer the significant differences between DID and XML

schema for defining XML document structures with appropriate examples.

Difference Between XML Schema and DTD

XML Schema vs. DTD
DTD, or Document Type Definition, and XML Schema, which
is also known as XSD, are two ways of describing the
structure and content of an XML document. DTD is the older

http://www.differencebetween.net/technology/difference-between-sgml-and-xml/

of the two, and as such, it has limitations that XML Schema
has tried to improve.

Summary:

1. XML Schema is namespace aware, while DTD is not.

2. XML Schemas are written in XML, while DTDs are not.

3. XML Schema is strongly typed, while DTD is not.

4. XML Schema has a wealth of derived and built-in data types

that are not available in DTD.

5. XML Schema does not allow inline definitions, while DTD

does.

11.

(i) List out data types data types of XML

XML Schema Data Types

XML Schema data types can be generally categorized a "simple type" (including

embedded simple type) and "complex type." The "embedded simple type" is already

defined, but can be used to create a new type through restriction or extension.

Table : XML Schema Data Types

Simple Type User can independently define. This type is used when a restriction

is placed on an embedded simple type to create and use a new

type.

Complex

Type

User can independently define. This type is used when the type

has a child element or attribute.

A simple type is a type that only contains text data. This type can be used with element

declarations and attribute declarations. On the other hand, a complex data type is a type

that has a child element or attribute structure.

●Simple Type Example

<xs:element name="Department" type="xs:string" />

Here, the section described together with "xs:string" is an embedded simple type

according to XML Schema. In this example, we have established the definition that the

data type for the element called "Department" is a text string.

●Complex Type Example

<xs:complexType name="EmployeeType">

 <xs:sequence maxOccurs="unbounded">

 <xs:element ref="Name" />

 <xs:element ref="Department" />

 </xs:sequence>

</xs:complexType>

<xs:element name="Name" type="xs:string" />

<xs:element name="Department" type="xs:string" />

(ii) Explain about the attributes of XML.

XML Elements vs. Attributes

Take a look at these examples:

<person gender="female">
 <firstname>Anna</firstname>
 <lastname>Smith</lastname>
</person>

<person>
 <gender>female</gender>
 <firstname>Anna</firstname>
 <lastname>Smith</lastname>
</person>

In the first example gender is an attribute. In the last, gender is an

element. Both examples provide the same information.

There are no rules about when to use attributes or when to use elements
in XML.

12.

Summarize on the following

(i) DOM based Parsing.

(ii) SAX based Parsing.

XML Parsers

An XML parser is a software library or package that provides interfaces for client

applications to work with an XML document. The XML Parser is designed to read the

XML and create a way for programs to use XML.

XML parser validates the document and check that the document is well formatted.

Let's understand the working of XML parser by the figure given below:

Types of XML Parsers

These are the two main types of XML Parsers:

1. DOM

2. SAX

DOM (Document Object Model)

A DOM document is an object which contains all the information of an XML document.

It is composed like a tree structure. The DOM Parser implements a DOM API. This API is

very simple to use.

Features of DOM Parser

A DOM Parser creates an internal structure in memory which is a DOM document object

and the client applications get information of the original XML document by invoking

methods on this document object.

DOM Parser has a tree based structure.

Advantages

1) It supports both read and write operations and the API is very simple to use.

2) It is preferred when random access to widely separated parts of a document is required.

Disadvantages

1) It is memory inefficient. (consumes more memory because the whole XML document

needs to loaded into memory).

2) It is comparatively slower than other parsers.

SAX (Simple API for XML)

A SAX Parser implements SAX API. This API is an event based API and less intuitive.

Features of SAX Parser

It does not create any internal structure.

Clients does not know what methods to call, they just overrides the methods of the API

and place his own code inside method.

It is an event based parser, it works like an event handler in Java.

Advantages

1) It is simple and memory efficient.

2) It is very fast and works for huge documents.

Disadvantages

1) It is event-based so its API is less intuitive.

2) Clients never know the full information because the data is broken into pieces.

13.

(i) Compare and contrast RSS & ATOM.

Difference Between RSS and ATOM

RSS vs ATOM

 Really Simple Syndication or RSS has been the

standard for web feeds for a considerable time.

 Web feeds contains either a summary or the full

text content of a web page.

 The problem with RSS is the often confusing and

non standard conventions used by RSS due in part

to its scattered development.

 The advent of the ATOM syndication standard

was a response to the design flaws of the RSS

standard.

 The primary advantage of the ATOM is its

adaptation as the IETF standard.

 Being an IETF standard, each atom feed contains an

explicit declaration of the format of the content

along with what language is used.

 RSS feeds do not declare its content, but since it only

contains plain text or escaped HTML, it is rather

easy for the browser to distinguish which is which.

A major flaw of RSS is in its code. RSS code isn’t really very

usable in other XML vocabularies since it wasn’t really

intended to do so at the very beginning. ATOM code has been

built from the ground with modularity in mind. Therefore, a

great majority of its code is reusable even with other XML

vocabularies like RSS.

Summary:

http://www.differencebetween.net/technology/difference-between-html-and-xhtml/
http://www.differencebetween.net/technology/difference-between-html-and-xml/

1. ATOM is an IETF standard while RSS is not

2. ATOM feeds explicitly indicates the content while the

browser is left to figure out whether the RSS feed contains

plain text or escaped HTML

3. ATOM code is modular and reusable while RSS code is not

4. RSS still holds dominance in the syndication format due to

its head start and popularity

(ii) Explain in detail about XSL elements.

XSLT <xsl:element>

Definition and Usage

The <xsl:element> element is used to create an element node in the output document.

Syntax

<xsl:element

name="name"

namespace="URI"

use-attribute-sets="namelist">

 <!-- Content:template -->

</xsl:element>

Attributes

Attribute Value Description

name name Required. Specifies the name of the element to be

created (the value of the name attribute can be set to an

expression that is computed at run-time, like this:

<xsl:element name="{$country}" />

namespace URI Optional. Specifies the namespace URI of the element

(the value of the namespace attribute can be set to an

expression that is computed at run-time, like this:

<xsl:element name="{$country}"

namespace="{$someuri}"/>

use-attribute-sets namelist Optional. A white space separated list of attribute-sets

containing attributes to be added to the element

Example 1

Create a "singer" element that contains the value of each artist element:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

 <xsl:for-each select="catalog/cd">

 <xsl:element name="singer">

 <xsl:value-of select="artist" />

 </xsl:element>

 </xsl:for-each>

</xsl:template>

</xsl:stylesheet>

EXAMPLE OUTPUT FILES

XML File

<catalog>

<cd>

<title>Empire Burlesque</title>

<artist>Bob Dylan</artist>

<country>USA</country>

<company>Columbia</company>

<price>10.90</price>

<year>1985</year>

</cd>

<cd>

<title>Hide your heart</title>

<artist>Bonnie Tyler</artist>

<country>UK</country>

<company>CBS Records</company>

<price>9.90</price>

<year>1988</year>

</cd>

</catalog>

XSL File

xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" version=

"1.0">

<xsl:template match="/">

<html>

<body>

<h2>My CD Collection</h2>

<xsl:for-each select="catalog/cd">

<xsl:element name="singer">

<xsl:value-of select="artist"/>

</xsl:element>

</xsl:for-each>

</body>

</html>

</xsl:template>

</xsl:stylesheet>

RESULT

My CD Collection

Bob Dylan

Bonnie Tyler

Dolly Parton

Gary Moore

14.

Explain in detail about

(i) XSL and XSLT transformation

XSLT - Transformation

What is XSLT?
XSL Transformations (XSLT 2.0) is a language for transforming XML documents into other
XML documents, text documents or HTML documents. You might want to format a chapter of
a book using XSL-FO, or you might want to take a database query and format it as HTML.

Wildly Popular
XSLT has become the language of choice for a very wide range of XML applications. It is of
course still used to produce XSL-FO documents for printing, but it is also used to integrate
back-end software for Web sites. We can find XSLT inside most modern Web browsers, so

http://www.w3.org/TR/xslt20
https://www.w3.org/standards/xml/transformation#xslfo

that XML can be transformed on the fly without the user even noticing; you will find XSLT on
the desktop, in servers, in network appliances.

What is XSLT Used For?
If you make a purchase on eBay, or buy a book at Amazon, chances are that pretty much
everything you see on every Web page has been processed with XSLT. Use XSLT to process
multiple XML documents and to produce any combination of text, HTML and XML output.
XSLT support is shipped with all major computer operating systems today, as well as being
built in to all major Web browsers.

XSLT – Transformation : STEPS

1) Start with a Raw XML Document

2) Create an XSL Style Sheet

3) Link the XSL Style Sheet to the XML Document

1) Start with a Raw XML Document

We want to transform the following XML document ("cdcatalog.xml") into XHTML:

<?xml version="1.0" encoding="UTF-8"?>

<catalog>

 <cd>

 <title>Empire Burlesque</title>

 <artist>Bob Dylan</artist>

 <country>USA</country>

 <company>Columbia</company>

 <price>10.90</price>

 <year>1985</year>

 </cd>

.</catalog>

2) Create an XSL Style Sheet

Then you create an XSL Style Sheet ("cdcatalog.xsl") with a transformation template:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

 <html>

 <body>

 <h2>My CD Collection</h2>

 <table border="1">

 <tr bgcolor="#9acd32">

 <th>Title</th>

 <th>Artist</th>

 </tr>

 <xsl:for-each select="catalog/cd">

 <tr>

 <td><xsl:value-of select="title"/></td>

 <td><xsl:value-of select="artist"/></td>

 </tr>

 </xsl:for-each>

 </table>

 </body>

 </html>

</xsl:template>

</xsl:stylesheet>

3) Link the XSL Style Sheet to the XML Document

Add the XSL style sheet reference to your XML document ("cdcatalog.xml"):

<?xml version="1.0" encoding="UTF-8"?>

<?xml-stylesheet type="text/xsl" href="cdcatalog.xsl"?>

<catalog>

 <cd>

 <title>Empire Burlesque</title>

 <artist>Bob Dylan</artist>

 <country>USA</country>

 <company>Columbia</company>

 <price>10.90</price>

 <year>1985</year>

 </cd>

.</catalog>

If you have an XSLT compliant browser it will nicely transform your XML into

XHTML.

Sample OUTPUT

My CD Collection

Title Artist

Empire Burlesque Bob Dylan

Hide your heart Bonnie Tyler

Greatest Hits Dolly Parton

Still got the blues Gary Moore

(ii) Comparison of DOM & SAX

XML Parsers

An XML parser is a software library or package that provides interfaces for client

applications to work with an XML document. The XML Parser is designed to read the

XML and create a way for programs to use XML.

XML parser validates the document and check that the document is well formatted.

Let's understand the working of XML parser by the figure given below:

Types of XML Parsers

These are the two main types of XML Parsers:

3. DOM

4. SAX

DOM (Document Object Model)

A DOM document is an object which contains all the information of an XML document.

It is composed like a tree structure. The DOM Parser implements a DOM API. This API is

very simple to use.

Features of DOM Parser

A DOM Parser creates an internal structure in memory which is a DOM document object

and the client applications get information of the original XML document by invoking

methods on this document object.

DOM Parser has a tree based structure.

Advantages

1) It supports both read and write operations and the API is very simple to use.

2) It is preferred when random access to widely separated parts of a document is required.

Disadvantages

1) It is memory inefficient. (consumes more memory because the whole XML document

needs to loaded into memory).

2) It is comparatively slower than other parsers.

SAX (Simple API for XML)

A SAX Parser implements SAX API. This API is an event based API and less intuitive.

Features of SAX Parser

It does not create any internal structure.

Clients does not know what methods to call, they just overrides the methods of the API

and place his own code inside method.

It is an event based parser, it works like an event handler in Java.

Advantages

1) It is simple and memory efficient.

2) It is very fast and works for huge documents.

Disadvantages

1) It is event-based so its API is less intuitive.

2) Clients never know the full information because the data is broken into pieces.

PART-C

1.
Explain how you shall carry out String Manipulations using a PHP

Program.

Manipulating PHP Strings

PHP provides many built-in functions for manipulating strings like calculating the

length of a string, find substrings or characters, replacing part of a string with

different characters, take a string apart, and many others.

Here are the examples of some of these functions.

Calculating the Length of a String

The strlen() function is used to calculate the number of characters inside a string. It

also includes the blank spaces inside the string.

Example

Run this code »
<?php

$my_str = 'Welcome to Tutorial Republic';

// Outputs: 28

echo strlen($my_str);

?>

Counting Number of Words in a String

The str_word_count() function counts the number of words in a string.

Example

Run this code »
<?php

$my_str = 'The quick brown fox jumps over the lazy dog.';

// Outputs: 9

echo str_word_count($my_str);

?>

Replacing Text within Strings

The str_replace() replaces all occurrences of the search text within the target string.

https://www.tutorialrepublic.com/codelab.php?topic=php&file=find-the-length-of-a-string
https://www.tutorialrepublic.com/codelab.php?topic=php&file=find-the-numbers-of-words-in-a-string

Example

Run this code »
<?php

$my_str = 'If the facts do not fit the theory, change the facts.';

// Display replaced string

echo str_replace("facts", "truth", $my_str);

?>

The output of the above code will be:

If the truth do not fit the theory, change the truth.

You can optionally pass the fourth argument to the str_replace() function to know

how many times the string replacements was performed, like this.

Example

Run this code »
<?php

$my_str = 'If the facts do not fit the theory, change the facts.';

// Perform string replacement

str_replace("facts", "truth", $my_str, $count);

// Display number of replacements performed

echo "The text was replaced $count times.";

?>

The output of the above code will be:

The text was replaced 2 times.

Reversing a String

The strrev() function reverses a string.

Example

Run this code »
<?php

$my_str = 'You can do anything, but not everything.';

// Display reversed string

echo strrev($my_str);

?>

https://www.tutorialrepublic.com/codelab.php?topic=php&file=replacing-text-within-a-string
https://www.tutorialrepublic.com/codelab.php?topic=php&file=get-number-of-string-replacements-performed
https://www.tutorialrepublic.com/codelab.php?topic=php&file=reverse-string

The output of the above code will be:

.gnihtyreve ton tub ,gnihtyna od nac uoY

2.

Design a PHP application for College Management System with appropriate built-in

functions and database.

3.

Design application to send an email using PHP.

PHP mail() Function

Example

Send a simple email:

<?php
// the message
$msg = "First line of text\nSecond line of text";

// use wordwrap() if lines are longer than 70 characters
$msg = wordwrap($msg,70);

// send email
mail("someone@example.com","My subject",$msg);
?>

Syntax

mail(to,subject,message,headers,parameters);

Parameter Values

Parameter Description

to Required. Specifies the receiver / receivers of the email

subject Required. Specifies the subject of the email. Note: This parameter

cannot contain any newline characters

message Required. Defines the message to be sent. Each line should be

separated with a LF (\n). Lines should not exceed 70 characters.
Windows note: If a full stop is found on the beginning of a line in the

message, it might be removed. To solve this problem, replace the full stop

with a double dot:

<?php

$txt = str_replace("\n.", "\n..", $txt);

?>

headers Optional. Specifies additional headers, like From, Cc, and Bcc. The

additional headers should be separated with a CRLF (\r\n).
Note: When sending an email, it must contain a From header. This can be

set with this parameter or in the php.ini file.

parameters Optional. Specifies an additional parameter to the sendmail program

(the one defined in the sendmail_path configuration setting). (i.e. this

can be used to set the envelope sender address when using sendmail

with the -f sendmail option)

Technical Details

Return Value: Returns the hash value of the address parameter, or FALSE

on failure. Note: Keep in mind that even if the email was

accepted for delivery, it does NOT mean the email is

actually sent and received!

PHP Version: 4+

PHP Changelog: PHP 7.2: The headers parameter also accepts an array

PHP 5.4: Added header injection protection for

the headers parameter.

PHP 4.3.0: (Windows only) All custom headers (like From,

Cc, Bcc and Date) are supported, and are not case-sensitive.

PHP 4.2.3: The parameter parameter is disabled in safe

mode

PHP 4.0.5: The parameter parameter was added

More Examples

Send an email with extra headers:

<?php
$to = "somebody@example.com";
$subject = "My subject";
$txt = "Hello world!";
$headers = "From: webmaster@example.com" . "\r\n" .
"CC: somebodyelse@example.com";

mail($to,$subject,$txt,$headers);
?>

Send an HTML email:

<?php
$to = "somebody@example.com, somebodyelse@example.com";
$subject = "HTML email";

$message = "
<html>
<head>
<title>HTML email</title>
</head>
<body>
<p>This email contains HTML Tags!</p>
<table>
<tr>
<th>Firstname</th>
<th>Lastname</th>
</tr>
<tr>
<td>John</td>
<td>Doe</td>
</tr>
</table>
</body>
</html>
";

// Always set content-type when sending HTML email
$headers = "MIME-Version: 1.0" . "\r\n";
$headers .= "Content-type:text/html;charset=UTF-8" . "\r\n";

// More headers
$headers .= 'From: <webmaster@example.com>' . "\r\n";
$headers .= 'Cc: myboss@example.com' . "\r\n";

mail($to,$subject,$message,$headers);
?>

4.

Summarize about XML schema and XML Parsers and Validation.

XML Schema

What is an XML Schema?

An XML Schema describes the structure of an XML document.

The XML Schema language is also referred to as XML Schema Definition

(XSD).

XSD Example

<?xml version="1.0"?>
<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:element name="note">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="to" type="xs:string"/>
 <xs:element name="from" type="xs:string"/>
 <xs:element name="heading" type="xs:string"/>
 <xs:element name="body" type="xs:string"/>
 </xs:sequence>
 </xs:complexType>
</xs:element>

</xs:schema>

The purpose of an XML Schema is to define the legal building blocks of an
XML document:

 the elements and attributes that can appear in a document
 the number of (and order of) child elements

 data types for elements and attributes
 default and fixed values for elements and attributes

Why Learn XML Schema?

In the XML world, hundreds of standardized XML formats are in daily use.

Many of these XML standards are defined by XML Schemas.

XML Schema is an XML-based (and more powerful) alternative to DTD.

XML Parser

All major browsers have a built-in XML parser to access and manipulate XML.

The XML DOM (Document Object Model) defines the properties and methods for

accessing and editing XML.

However, before an XML document can be accessed, it must be loaded into an XML

DOM object.

https://www.w3schools.com/xml/dom_intro.asp

All modern browsers have a built-in XML parser that can convert text into an XML DOM

object.

Parsing a Text String

This example parses a text string into an XML DOM object, and extracts the info from it

with JavaScript:

Example

<html>

<body>

<p id="demo"></p>

<script>

var text, parser, xmlDoc;

text = "<bookstore><book>" +

"<title>Everyday Italian</title>" +

"<author>Giada De Laurentiis</author>" +

"<year>2005</year>" +

"</book></bookstore>";

parser = new DOMParser();

xmlDoc = parser.parseFromString(text,"text/xml");

document.getElementById("demo").innerHTML =

xmlDoc.getElementsByTagName("title")[0].childNodes[0].nodeValue;

</script>

</body>

</html>

OUTPUT

Everyday Italian

XML - Validation
Validation is a process by which an XML document is validated. An XML document is

said to be valid if its contents match with the elements, attributes and associated document

type declaration(DTD), and if the document complies with the constraints expressed in it.

Validation is dealt in two ways by the XML parser. They are −

 Well-formed XML document

 Valid XML document

Well-formed XML Document

An XML document is said to be well-formed if it adheres to the following rules −

 Non DTD XML files must use the predefined character entities

for amp(&), apos(single quote), gt(>), lt(<), quot(double quote).

 It must follow the ordering of the tag. i.e., the inner tag must be closed before

closing the outer tag.

 Each of its opening tags must have a closing tag or it must be a self ending

tag.(<title>....</title> or <title/>).

 It must have only one attribute in a start tag, which needs to be quoted.

 amp(&), apos(single quote), gt(>), lt(<), quot(double quote) entities other than

these must be declared.

Example

Following is an example of a well-formed XML document −

<?xml version = "1.0" encoding = "UTF-8" standalone = "yes" ?>

<!DOCTYPE address

[

 <!ELEMENT address (name,company,phone)>

 <!ELEMENT name (#PCDATA)>

 <!ELEMENT company (#PCDATA)>

 <!ELEMENT phone (#PCDATA)>

]>

<address>

 <name>Tanmay Patil</name>

 <company>TutorialsPoint</company>

 <phone>(011) 123-4567</phone>

</address>

The above example is said to be well-formed as −

 It defines the type of document. Here, the document type is element type.

 It includes a root element named as address.

 Each of the child elements among name, company and phone is enclosed in its self

explanatory tag.

 Order of the tags is maintained.

Valid XML Document

If an XML document is well-formed and has an associated Document Type Declaration

(DTD), then it is said to be a valid XML document.

CS8651 -UNIT 5-NOTES

CS8651- Internet Programming 2017Reg

UNIT V - INTRODUCTION TO AJAX and WEB SERVICES

JAX: Ajax Client Server Architecture – XML Http Request Object – Call Back Methods;

Web Services: Introduction – Java web services Basics – Creating, Publishing, Testing and

Describing a Web services WSDL) –Consuming a web service, Database Driven web service

from an application – SOAP.

 PART-A

No Questions

1.

Describe AJAX Control Extender Toolkit.

What is the ASP.NET AJAX Control Toolkit?
The ASP.NET AJAX Control Toolkit is an open-source project built on top of the

Microsoft ASP.NET AJAX framework. It is a joint effort between Microsoft and the

ASP.NET AJAX community that provides a powerful infrastructure to write reusable,

customizable and extensible ASP.NET AJAX extenders and controls, as well as a rich

array of controls that can be used out of the box to create an interactive Web

experience.

They are designed using concepts that are familiar to ASP.NET Web Forms

application developers. Using the Ajax Control Toolkit, you can build Ajax-enabled

ASP.NET Web Forms applications and ASP.NET

MVC Web applications by dragging the controls from the Visual Studio Toolbox

onto a page. The Ajax Control Toolkit is an open-source project that is part of the

CodePlex Foundation

The AJAX Control Toolkit contains more than 30 controls that enable you to easily create rich,
interactive web pages.

2.

Discuss the advantages of AJAX.

Advantages of AJAX

 Reduce the traffic travels between the client and the server.
 Response time is faster so increases performance and speed.
 You can use JSON (JavaScript Object Notation) which is alternative to XML.

JSON is key value pair and works like an array.
 You can use Firefox browser with an add-on called as Firebug to debug all Ajax

calls.
 Ready Open source JavaScript libraries available for use – JQuery, Prototype,

Scriptaculous, etc..
 AJAX communicates over HTTP Protocol.

3.

Identify the role of a callback function in performing a partial page update

in an AJAX application.

Partial-page rendering with UpdatePanels

http://en.wikipedia.org/wiki/JSON
http://en.wikipedia.org/wiki/XML
http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol

One of the most fascinating controls in the ASP.NET AJAX framework is

the UpdatePanel. This new control replaces the need for a page to refresh during

a postback. Only portions of a page, designated by the UpdatePanel, are updated. This

technique is known as partial-page rendering and can be highly effective in

improving the user experience.

6.1.1. Evolution of the UpdatePanel

For years, programming with the XMLHttpRequest object has been the most

commonly used approach for communicating with the server from client-side script.

The complexities involved in coding those types of applications scared away a lot of

developers. To assist, the overall scripting model in ASP.NET 2.0 was significantly

enhanced to introduce the idea of script callbacks—a way for server controls to

communicate with client-side scripts between callbacks. This model was powerful

because it offered access to the state of all the controls on the page during a callback.

Unfortunately, many developers found the model difficult to work with, and

numerous concerns were raised. The lack of support for passing complex types

as parameters to the server (only strings were allowed) made the prototype too rigid

and exposed its limitations. Developers began to look elsewhere for solutions.

In an effort to address these concerns, members of the ASP.NET team began work on

a communication library built on top of the callbacks. The primary objective of the

library was to simplify the use of callbacks and to provide a rich set of APIs for

enabling the exchange of complex and simple types between the server and client.

From this library came a control called the RefreshPanel. The purpose of the

RefreshPanel was to offer a server control that refreshed the contents of a page

without a page refresh. Out of this hard work, the UpdatePanel emerged, with deeper

integration into the page lifecycle and a more transparent footprint on the page.

NOTE

A callback is a piece of code that is passed in as a parameter or argument to other code. The

other piece of code can call the callback code (usually a function) at any time, even

numerous times, in response to some processing.

4.

Differentiate AJAX forms with HTML5 forms.

AJAX is the name of a communication architecture between web pages and
server side.

JQuery is a javascript library that is written for unifying JS method calls
(regarding DOM manipulation, String and Array functions, DOM queries...etc.)
in all browsers.

HTML5 is the rendering specification to be implemented by all browser
providers. For this rendering to work JS Engine should also be updated, so
HTML5 also means a JS engine with new features like drawing on a canvas.

5.

What is XML Http Request object? List its properties.

The XMLHttpRequest Object

With the XMLHttpRequest object you can update parts of a web page, without

reloading the whole page.

The XMLHttpRequest Object

The XMLHttpRequest object is used to exchange data with a server behind the

scenes.

The XMLHttpRequest object is the developers dream, because you can:

 Update a web page without reloading the page

 Request data from a server after the page has loaded

 Receive data from a server after the page has loaded

 Send data to a server in the background

XMLHttpRequest Object Methods

Method Description

abort() Cancels the current request

getAllResponseHeaders() Returns header information

getResponseHeader() Returns specific header information

open(method,url,async,uname,pswd) Specifies the type of request, the URL,

if the request should be handled

asynchronously or not, and other

optional attributes of a request

method: the type of request: GET or

POST

url: the location of the file on the

server

async: true (asynchronous) or false

(synchronous)

send(string) send(string) Sends the request off to

the server.

string: Only used for POST requests

setRequestHeader() Adds a label/value pair to the header

to be sent

XMLHttpRequest Object Properties

Property Description

onreadystatechange Stores a function (or the name of a function) to be

called automatically each time the readyState

property changes

readyState Holds the status of the XMLHttpRequest. Changes

from 0 to 4:

0: request not initialized

1: server connection established

2: request received

3: processing request

4: request finished and response is ready

responseText Returns the response data as a string

responseXML Returns the response data as XML data

status Returns the status-number (e.g. "404" for "Not

Found" or "200" for "OK")

statusText Returns the status-text (e.g. "Not Found" or "OK")

6.

Summarize the need of SOAP and show its structure.

XML Soap

 SOAP stands for Simple Object Access Protocol

 SOAP is an application communication protocol

 SOAP is a format for sending and receiving messages

 SOAP is platform independent

 SOAP is based on XML

 SOAP is a W3C recommendation

Why SOAP?

It is important for web applications to be able to communicate over the Internet.

The best way to communicate between applications is over HTTP, because HTTP is

supported by all Internet browsers and servers. SOAP was created to accomplish this.

A SOAP message is an ordinary XML document containing the following elements:

 An Envelope element that identifies the XML document as a SOAP message

 A Header element that contains header information

 A Body element that contains call and response information

 A Fault element containing errors and status information

7.

Can you develop the service end point interface in RPC?

Example

Sample Java Beans service endpoint implementation and interface

The following example illustrates a simple explicit Java Beans service

endpoint implementation and the associated service endpoint interface.

/** This is an excerpt from the service implementation file,

EchoServicePortTypeImpl.java package com.ibm.was.wssample.echo;

 import java.io.ByteArrayInputStream;

 import java.io.ByteArrayOutputStream;

 import javax.xml.bind.JAXBContext;

 import javax.xml.bind.Marshaller;

 import javax.xml.bind.Unmarshaller;

 import javax.xml.transform.stream.StreamSource;

@javax.jws.WebService(serviceName = "EchoService",

 endpointInterface =

"com.ibm.was.wssample.echo.EchoServicePortType",

targetNamespace="http://com/ibm/was/wssample/echo/",

 portName="EchoServicePort")

public class EchoServicePortTypeImpl implements EchoServicePortType {

 public EchoServicePortTypeImpl() {

 }

 public String invoke(String obj) {

 String str;

 str = obj;

 return str;

 }

}

/** This is a sample EchoServicePortType.java service interface */

 import javax.jws.WebMethod;

 import javax.jws.WebParam;

 import javax.jws.WebResult;

 import javax.jws.WebService;

 import javax.xml.ws.*;

@WebService(name = "EchoServicePortType",

 targetNamespace =

"http://com/ibm/was/wssample/echo/",

 wsdlLocation="WEB-INF/wsdl/Echo.wsdl")

public interface EchoServicePortType {

 /** ...the method process ...*/

 @WebMethod

 @WebResult(name = "response", targetNamespace =

"http://com/ibm/was/wssample/echo/")

 @RequestWrapper(localName = "invoke", targetNamespace =

"http://com/ibm/was/wssample/echo/", className =

"com.ibm.was.wssample.echo.Invoke")

 @ResponseWrapper(localName = "echoStringResponse",

targetNamespace = "http://com/ibm/was/wssample/echo/", className =

"com.ibm.was.wssample.echo.EchoStringResponse")

 public String invoke(

 @WebParam(name = "arg0", targetNamespace =

"http://com/ibm/was/wssample/echo/")

 String arg0);

}

Sample Provider endpoint implementation

The following example illustrates a simple Provider service endpoint

interface for a Java class.

package jaxws.provider.source;

 import javax.xml.ws.Provider;

 import javax.xml.ws.WebServiceProvider;

 import javax.xml.transform.Source;

@WebServiceProvider() public class SourceProvider implements

Provider<Source> {

 public Source invoke(Source data) {

 return data;

 }

}

8.

List any four examples of web services.

A Web Service Example

In the following example we will use ASP.NET to create a simple Web

Service that converts the temperature from Fahrenheit to Celsius, and

vice versa:

<%@ WebService Language="VBScript" Class="TempConvert" %>

Imports System
Imports System.Web.Services

Public Class TempConvert :Inherits WebService

<WebMethod()> Public Function FahrenheitToCelsius(ByVal
Fahrenheit As String) As String
 dim fahr
 fahr=trim(replace(Fahrenheit,",","."))
 if fahr="" or IsNumeric(fahr)=false then return "Error"
 return ((((fahr) - 32) / 9) * 5)
end function

<WebMethod()> Public Function CelsiusToFahrenheit(ByVal Celsius
As String) As String
 dim cel
 cel=trim(replace(Celsius,",","."))
 if cel="" or IsNumeric(cel)=false then return "Error"
 return ((((cel) * 9) / 5) + 32)
end function

end class

This document is saved as an .asmx file. This is the ASP.NET file

extension for XML Web Services.

Put the Web Service on Your Web Site

Using a form and the HTTP POST method, you can put the web service

on your site, like this:

Fahrenheit to Celsius:

Submit

Celsius to Fahrenheit:

Submit

 code to add the Web Service to a web page:

<form action='tempconvert.asmx/FahrenheitToCelsius'
method="post" target="_blank">
<table>
 <tr>
 <td>Fahrenheit to Celsius:</td>
 <td>
 <input class="frmInput" type="text" size="30" name="Fahrenhei
t">
 </td>
 </tr>
 <tr>
 <td></td>
 <td align="right">
 <input type="submit" value="Submit" class="button">
 </td>
 </tr>
</table>
</form>

<form action='tempconvert.asmx/CelsiusToFahrenheit'
method="post" target="_blank">
<table>
 <tr>
 <td>Celsius to Fahrenheit:</td>
 <td>
 <input class="frmInput" type="text" size="30" name="Celsius">
 </td>
 </tr>
 <tr>
 <td></td>
 <td align="right">
 <input type="submit" value="Submit" class="button">
 </td>
 </tr>
</table>
</form>

Substitute the "tempconvert.asmx" with the address of your web

service like:

http://www.example.com/xml/tempconvert.asmx

9.

Discover an example for web service registry along with its functions.

Web Services Discovery provides access to software systems over the Internet using

standard protocols. In the most basic scenario there is a Web Service Provider that

publishes a service and a Web Service Consumer that uses this service. Web Service

Discovery is the process of finding suitable web services for a given task.[1]

Publishing a web service involves creating a software artifact and making it

accessible to potential consumers. Web service providers augment a service endpoint

https://en.wikipedia.org/wiki/Web_services
https://en.wikipedia.org/wiki/Web_Services_Discovery#cite_note-1
https://en.wikipedia.org/wiki/Software_artifact
https://en.wikipedia.org/wiki/Service_endpoint_interface

interface with an interface description using the Web Services Description

Language (WSDL) so that a consumer can use the service.

Universal Description, Discovery, and Integration (UDDI) is an XML-based

registry for business internet services. A provider can explicitly register a service with

a Web Services Registry such as UDDI or publish additional documents intended to

facilitate discovery such as Web Services Inspection Language (WSIL) documents.

The service users or consumers can search web services manually or automatically.

The implementation of UDDI servers and WSIL engines should provide simple

search APIs or web-based GUI to help find Web services.

Web services may also be discovered using multicast mechanisms like WS-

Discovery, thus reducing the need for centralized registries in smaller networks.

10.

Analyze the need for web service.

We should use web services as it comes with various advantages listed below

Re-usability

Once we develop some business logic,we can make it reuse for other applications

Example:
If 10 different applications requires to use our logic

We can expose our logic over a network as a web service

So all the 10 different application can access it from the network.

Interoperability

It provides the freedom for a developers to choose whatever the technology they

want to use for development.

Web services uses a set of standards and protocols and enable us to achieve

interoperability.

Hence applications developed in Java,Mainframe,Ruby or any other technology can

call the web service and use it.

Loosely coupled

Web service exist independent of the other parts of the application that uses it.

So any changes to the application can be made without affecting the web service.

Deployability

It is very easy to deploy the web application as they are deployed over standard

internet technologies.

11.
Give the uses of WSDL along with its definition.

https://en.wikipedia.org/wiki/Service_endpoint_interface
https://en.wikipedia.org/wiki/Web_Services_Description_Language
https://en.wikipedia.org/wiki/Web_Services_Description_Language
https://en.wikipedia.org/wiki/Web_Services_Inspection_Language
https://en.wikipedia.org/wiki/GUI
https://en.wikipedia.org/wiki/Multicast
https://en.wikipedia.org/wiki/WS-Discovery
https://en.wikipedia.org/wiki/WS-Discovery
http://i.viglink.com/?key=09de04bbca2b35471f6e5393bcef569d&insertId=94b6bb88bbab24f4&type=H&mid=39197&exp=60%3ACI1C55A%3A2&libId=k5hgpk710101ysj1000DAbajpophj&loc=http%3A%2F%2Fjavainsimpleway.com%2Fwhy-do-we-need-web-service%2F&v=1&iid=94b6bb88bbab24f4&out=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Faws-test-practice%2F&ref=https%3A%2F%2Fwww.google.com%2F&title=Why%20do%20we%20need%20Web%20service%3F%20%7C%20Javainsimpleway&txt=%3Cspan%3Eweb%20%20%3C%2Fspan%3E%3Cspan%3Eservice%3C%2Fspan%3E
http://i.viglink.com/?key=09de04bbca2b35471f6e5393bcef569d&insertId=94b6bb88bbab24f4&type=H&mid=39197&exp=60%3ACI1C55A%3A2&libId=k5hgpk710101ysj1000DAbajpophj&loc=http%3A%2F%2Fjavainsimpleway.com%2Fwhy-do-we-need-web-service%2F&v=1&iid=94b6bb88bbab24f4&out=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Faws-test-practice%2F&ref=https%3A%2F%2Fwww.google.com%2F&title=Why%20do%20we%20need%20Web%20service%3F%20%7C%20Javainsimpleway&txt=%3Cspan%3Eweb%20%3C%2Fspan%3E%3Cspan%3Eservice%3C%2Fspan%3E
http://i.viglink.com/?key=09de04bbca2b35471f6e5393bcef569d&insertId=94b6bb88bbab24f4&type=H&mid=39197&exp=60%3ACI1C55A%3A2&libId=k5hgpk710101ysj1000DAbajpophj&loc=http%3A%2F%2Fjavainsimpleway.com%2Fwhy-do-we-need-web-service%2F&v=1&iid=94b6bb88bbab24f4&out=https%3A%2F%2Fwww.udemy.com%2Fcourse%2Faws-test-practice%2F&ref=https%3A%2F%2Fwww.google.com%2F&title=Why%20do%20we%20need%20Web%20service%3F%20%7C%20Javainsimpleway&txt=%3Cspan%3EWeb%20%3C%2Fspan%3E%3Cspan%3Eservice%3C%2Fspan%3E

WSDL stands for Web Services Description Language. It is the standard
format for describing a web service. WSDL was developed jointly by Microsoft
and IBM.

Features of WSDL

 WSDL is an XML-based protocol for information exchange in decentralized and
distributed environments.

 WSDL definitions describe how to access a web service and what operations it
will perform.

 WSDL is a language for describing how to interface with XML-based services.

 WSDL is an integral part of Universal Description, Discovery, and Integration
(UDDI), an XML-based worldwide business registry.

 WSDL is the language that UDDI uses.

 WSDL is pronounced as 'wiz-dull' and spelled out as 'W-S-D-L'.

WSDL Usage

WSDL is often used in combination with SOAP and XML Schema to provide
web services over the Internet. A client program connecting to a web service
can read the WSDL to determine what functions are available on the server.
Any special datatypes used are embedded in the WSDL file in the form of XML
Schema. The client can then use SOAP to actually call one of the functions
listed in the WSDL.

12.

Compare SOAP and HTTP.

Difference between SOAP and HTTP

SOAP HTTP
 SOAP was originally defined as

S- Simple O- Object A-Access

P-protocol.

 It is a protocol specification

which is used for exchanging

structured information.

 It is used in the implementation

of web services in computer-

based networks.

 SOAP for its message

format relies on XML

Information set and sometimes

relies on other application

layer protocols as well, such

as Hypertext Transfer

Protocol (HTTP) or Simple

 The HTTP or Hypertext

Transfer Protocol (HTTP)

is an application protocol

which is used for

distributed, collaborative

and hypermedia

information systems.

 HTTP is widely regarded

as the foundation of data

communication for the

World Wide Web (WWW).

 Hypertext is a structured

text that uses logical links

or hyperlinks between

those nodes that containing

text. HTTP is the protocol

https://www.educba.com/web-services-interview-questions/
https://www.educba.com/web-services-interview-questions/
https://www.educba.com/xml-interview-questions/
https://www.educba.com/xml-interview-questions/
https://www.educba.com/simple-mail-transfer-protocol/

Mail Transfer Protocol

(SMTP).
 It is used for message

negotiation and transmission

mainly.
 SOAP forms the foundation

layer of a web services

protocol stack.

for exchanging or

transferring hypertext.

 The standards

development

of HTTP when it was

innovated was coordinated

by the Internet Engineering

Task Force and the World

Wide Web Consortium also

called as W3C.

13.

Summarize the need for enhancing security in web services.

Definition - What does Web Services Security (WS Security) mean?

Web Services Security (WS Security) is a specification that defines how
security measures are implemented in web services to protect them from
external attacks. It is a set of protocols that ensure security for SOAP-based
messages by implementing the principles of confidentiality, integrity and
authentication.

Because Web services are independent of any hardware and software
implementations, WS-Security protocols need to be flexible enough to
accommodate new security mechanisms and provide alternative mechanisms
if an approach is not suitable. Because SOAP-based messages traverse
multiple intermediaries, security protocols need to be able to identify fake
nodes and prevent data interpretation at any nodes. WS-Security combines
the best approaches to tackle different security problems by allowing the
developer to customize a particular security solution for a part of the problem.
For example, the developer can select digital signatures for non-repudiation
and Kerberos for authentication.

14.

Name the types of indicators along with the definition.

Web Services Security (WSS)

Web Services Security (WSS or WS-Security) describes enhancements

to SOAP messaging in order to provide quality of protection through message

integrity, and single message authentication. These mechanisms can be used to

accommodate a wide variety of security models and encryption technologies.

The scope of the Web Services Security Technical Committee is the support of

security mechanisms in the following areas:

https://www.educba.com/simple-mail-transfer-protocol/
https://www.educba.com/simple-mail-transfer-protocol/
https://www.educba.com/http-caching/
https://www.service-architecture.com/articles/web-services/soap.html

 Using XML Signature to provide SOAP message integrity for Web Services

 Using XML Encryption to provide SOAP message confidentiality for Web Services

 Attaching and/or referencing security tokens in headers of SOAP messages. Options include:

 Username token

 SAML

 XrML

 Kerberos

 X.509

 Carrying security information for potentially multiple, designated actors

 Associating signatures with security tokens

 Each of the security mechanisms will use implementation and language neutral XML formats
defined in XML Schema.

15.

Classify the basic concepts behind JAX-RPC technology.

JAX-RPC

Java APIs for XML-based Remote Procedure Call (JAX-RPC) help with Web

service interoperability and accessibility by defining Java APIs that Java applications

use to develop and access Web services. JAX-RPC fully embraces the heterogeneous

nature of Web services -- it allows a JAX-RPC client to talk to another Web service

deployed on a different platform and coded in a different language. Similarly, it also

allows clients on other platforms and coded in different languages to talk to a JAX-

RPC service. JAX-RPC also defines the mapping between WSDL service

descriptions and Java interfaces.

Th the JAX-RPC technology and describes its client and server programming

models. JAX-RPC hides the complexity of underlying protocols and message-level

processing from application developers crafting Web services using the Java 2

platform. The API combines XML with Remote Procedure Call (RPC), which is a

mechanism enabling clients to execute procedures on distributed or remote systems,

so that developers can build Web services and clients. The JAX-RPC remote

procedure calls are represented by an XML infoset and they are carried over a

network transport. While the JAX-RPC APIs rely on a XML-based protocol and a

network transport, the APIs themselves are independent of a specific protocol or

transport. The current JAX-RPC implementation relies on the SOAP 1.1 protocol and

HTTP 1.1 network transport.

16.

What are the benefits of UDDI?

Problems the UDDI specification can help to solve:

Making it possible to discover the right business from the millions currently online

Defining how to enable commerce once the preferred business is discovered

Reaching new customers and increasing access to current customers

Expanding offerings and extending market reach

https://www.service-architecture.com/articles/xml/xml_signature.html
https://www.service-architecture.com/articles/web-services/xml_encryption.html
https://www.service-architecture.com/articles/web-services/security_assertion_markup_language_saml.html
https://www.service-architecture.com/articles/web-services/extensible_rights_markup_language_xrml.html
https://www.service-architecture.com/articles/xml/xml_schema.html

Solving customer-driven need to remove barriers to allow for rapid participation in the

global Internet

economy

Describing services and business processes programmatically in a single, open, and

secure environment

17.

What are the core elements of UDDI?

UDDI defines four core data elements within the data model:

businessEntity (modeling business information)

businessService (describing a service)

tModel (describing specifications, classifications, or identifications)

binding Template (mapping between a businessService and the set of tModels that

describe its technical

fingerprint)

18.

Rewrite the definition for UDDI.

UDDI is an XML-based standard for describing, publishing, and finding web
services.

 UDDI stands for Universal Description, Discovery, and Integration.

 UDDI is a specification for a distributed registry of web services.

 UDDI is a platform-independent, open framework.

 UDDI can communicate via SOAP, CORBA, Java RMI Protocol.

 UDDI uses Web Service Definition Language(WSDL) to describe interfaces to
web services.

 UDDI is seen with SOAP and WSDL as one of the three foundation standards of
web services.

 UDDI is an open industry initiative, enabling businesses to discover each other
and define how they interact over the Internet.

UDDI has two sections −

 A registry of all web service's metadata, including a pointer to the WSDL
description of a service.

 A set of WSDL port type definitions for manipulating and searching that registry.

19.

Give the usage of UDDI in web service.

UDDI is an XML-based standard for describing, publishing, and finding web
services.

 UDDI stands for Universal Description, Discovery, and Integration.

 UDDI is a specification for a distributed registry of web services.

 UDDI is a platform-independent, open framework.

 UDDI can communicate via SOAP, CORBA, Java RMI Protocol.

 UDDI uses Web Service Definition Language(WSDL) to describe interfaces to
web services.

 UDDI is seen with SOAP and WSDL as one of the three foundation standards of
web services.

 UDDI is an open industry initiative, enabling businesses to discover each other
and define how they interact over the Internet.

UDDI has two sections −

 A registry of all web service's metadata, including a pointer to the WSDL
description of a service.

 A set of WSDL port type definitions for manipulating and searching that registry.

20.

Define WSDL.

WSDL stands for Web Services Description Language. It is the standard
format for describing a web service. WSDL was developed jointly by Microsoft
and IBM.

Features of WSDL

 WSDL is an XML-based protocol for information exchange in decentralized and
distributed environments.

 WSDL definitions describe how to access a web service and what operations it
will perform.

 WSDL is a language for describing how to interface with XML-based services.

 WSDL is an integral part of Universal Description, Discovery, and Integration
(UDDI), an XML-based worldwide business registry.

 WSDL is the language that UDDI uses.

 WSDL is pronounced as 'wiz-dull' and spelled out as 'W-S-D-L'.

WSDL Usage

WSDL is often used in combination with SOAP and XML Schema to provide
web services over the Internet. A client program connecting to a web service
can read the WSDL to determine what functions are available on the server.
Any special datatypes used are embedded in the WSDL file in the form of XML
Schema. The client can then use SOAP to actually call one of the functions
listed in the WSDL.

 PART-B

1.

(i) Describe in detail about the AJAX architecture.

(ii) List out the call back methods.

2.

(i) Analyze various concepts of RPC.

Remote Procedure Call (RPC)

A remote procedure call is an interprocess communication technique that is
used for client-server based applications. It is also known as a subroutine call
or a function call.

A client has a request message that the RPC translates and sends to the
server. This request may be a procedure or a function call to a remote server.
When the server receives the request, it sends the required response back to
the client. The client is blocked while the server is processing the call and only
resumed execution after the server is finished.

The sequence of events in a remote procedure call are given as follows:

 The client stub is called by the client.
 The client stub makes a system call to send the message to the server and puts

the parameters in the message.
 The message is sent from the client to the server by the client’s operating

system.
 The message is passed to the server stub by the server operating system.
 The parameters are removed from the message by the server stub.
 Then, the server procedure is called by the server stub.

A diagram that demonstrates this is as follows:

Advantages of Remote Procedure Call

Some of the advantages of RPC are as follows:

 Remote procedure calls support process oriented and thread oriented models.
 The internal message passing mechanism of RPC is hidden from the user.
 The effort to re-write and re-develop the code is minimum in remote procedure

calls.
 Remote procedure calls can be used in distributed environment as well as the

local environment.
 Many of the protocol layers are omitted by RPC to improve performance.

Disadvantages of Remote Procedure Call

Some of the disadvantages of RPC are as follows:

 The remote procedure call is a concept that can be implemented in different
ways. It is not a standard.

 There is no flexibility in RPC for hardware architecture. It is only interaction
based.

 There is an increase in costs because of remote procedure call.

(ii) Explain the basic concepts behind JAX-RPC.

JAX-RPC stands for Java API for XML-based RPC. It's an API for building

Web services and clients that used remote procedure calls (RPC) and XML.

Often used in a distributed client/server model, an RPC mechanism enables

clients to execute procedures on other systems.

In JAX-RPC, a remote procedure call is represented by an XML-based

protocol such as SOAP. The SOAP specification defines envelope structure,

encoding rules, and a convention for representing remote procedure calls

and responses. These calls and responses are transmitted as SOAP messages

over HTTP. In this release, JAX-RPC relies on SOAP 1.1 and HTTP 1.1.

Although JAX-RPC relies on complex protocols, the API hides this

complexity from the application developer. On the server side, the

developer specifies the remote procedures by defining methods in an

interface written in the Java programming language. The developer also

codes one or more classes that implement those methods. Client programs

are also easy to code. A client creates a proxy, a local object representing

the service, and then simply invokes methods on the proxy.

With JAX-RPC, clients and Web services have a big advantage--the

platform independence of the Java programming language. In addition,

JAX-RPC is not restrictive: a JAX-RPC client can access a Web service that

is not running on the Java platform and vice versa. This flexibility is

possible because JAX-RPC uses technologies defined by the World Wide

Web Consortium (W3C): HTTP, SOAP, and the Web Service Description

Language (WSDL). WSDL specifies an XML format for describing a

service as a set of endpoints operating on messages.

3.

Explain in detail with an example of Java Web Services.

With a simple example illustrate the steps to create a java web service. (NOV/DEC

2012)

Writing a java web service
Currency conversion Service
Writing a server for a service using JWSDP 1.3 tools

Application: currency converter

Three operations:

fromDollars

fromEuros

fromYen

Input: value in specified currency

Output: object containing input value and equivalent values in other two

currencies
Writing server software
1. Write service endpoint interface

• May need to write additional classes representing data structures

2. Write class implementing the interface

3. Compile classes

4. Create configuration files and run JWSDP tools to create web service

5. Deploy web service to Tomcat
service endpoint interface
The Web service endpoint interface is used to define the ‘Web services

methods’.

A Web service endpoint interface must conform to the rules of a JAX-RPC

service definition

interface.

a service endpoint interface (SEI) that defines the interface of the web service.

Configuration files are XML files that can be changed as needed. Developers

can use

configuration files to change settings without recompiling applications.

Administrators can use

configuration files to set policies that affect how applications run on their

computers.

config.xml : Defines the URL for WSDL file location. Each Web services has

a corresponding

WSDL (Web service Definition Language) document.
JWSDP: Server

Rules for Service endpoint interface

Must extend java.rmi.Remote

declares a set of methods that may be invoked from a remote Java Virtual

Machine(JVM)

Every method must throw java.rmi.RemoteException

Parameter/return value data types are restricted

No public static final declarations (global constants) It must not have constant

declarations

Allowable parameter/return value data types

Java primitives (int, boolean, etc.)

Primitive wrapper classes (Integer, etc.)

String, Date, Calendar, BigDecimal, BigInteger

java.xml.namespace.QName, java.net.URI

Struct: class consisting entirely of public instance variables

Array of any of the above

Struct for currency converter app (data type for return values)

Run jar and wsdeploy to create a Web Archive (WAR) file converter.war

Name must match urlPatternBase value

jaxrpc-ri.xml: Defines the various end points for referencing a Web service.

wscompile: The wscompile tool generates stubs, and WSDL files used in JAX-

RPC clients and

services. The tool reads as input a configuration file and either a WSDL file or an

RMI interface

that defines the service.

wsdeploy: Reads a WAR file (something like Jar file) and the jaxrpc-ri.xml file

and then

generates another WAR file that is ready for deployment

Write service endpoint interface

May need to write additional classes representing data structures

Write class implementing the interface

Compile classes

Create configuration files and run JWSDP tools to create web service

Deploy web service to Tomcat

Just copy converter.war to Tomcat webapps directory

May need to use Manager app to deploy

Enter converter.war in “WAR or Directory URL” text box

Testing success:

Visit http://localhost:8080/converter/currency

4.

Discuss in detail the architecture of web services.

Architecture of Web Services

The Web Services architecture describes how to instantiate the elements and
implement the operations in an interoperable manner.

The architecture of web service interacts among three roles: service provider,

service requester, and service registry. The interaction involves the three

operations: publish, find, and bind. These operations and roles act upon

http://localhost:8080/converter/currency

the web services artifacts. The web service artifacts are the web service
software module and its description.

The service provider hosts a network-associable module (web service). It defines

a service description for the web service and publishes it to a service requestor or

service registry. These service requestor uses a find operation to retrieve the

service description locally or from the service registry. It uses the service

description to bind with the service provider and invoke with the web service

implementation.

The following figure illustrates the operations, roles, and their interaction.

Roles in a Web Service Architecture

There are three roles in web service architecture:

o Service Provider

o Service Requestor

o Service Registry

Service Provider

From an architectural perspective, it is the platform that hosts the services.

Service Requestor

Service requestor is the application that is looking for and invoking or initiating

an interaction with a service. The browser plays the requester role, driven by a
consumer or a program without a user interface.

Service Registry

Service requestors find service and obtain binding information for services during
development.

Operations in a Web Service Architecture

Three behaviors that take place in the microservices:

o Publication of service descriptions (Publish)

o Finding of services descriptions (Find)

o Invoking of service based on service descriptions (Bind)

Publish: In the publish operation, a service description must be published so
that a service requester can find the service.

Find: In the find operation, the service requestor retrieves the service description

directly. It can be involved in two different lifecycle phases for the service

requestor:

o At design, time to retrieve the service's interface description for program

development.

o And, at the runtime to retrieve the service's binding and location

description for invocation.

Bind: In the bind operation, the service requestor invokes or initiates an

interaction with the service at runtime using the binding details in the service

description to locate, contact, and invoke the service.

Artifacts of the web service

There are two artifacts of web services:

o Service

o Service Registry

Service: A service is an interface described by a service description. The service

description is the implementation of the service. A service is a software module

deployed on network-accessible platforms provided by the service provider. It

interacts with a service requestor. Sometimes it also functions as a requestor,
using other Web Services in its implementation.

Service Description: The service description comprises the details of

the interface and implementation of the service. It includes its data types,

operations, binding information, and network location. It can also

categorize other metadata to enable discovery and utilize by service requestors.
It can be published to a service requestor or a service registry.

5. (i) Deduce any two elements of WSDL.

WSDL (Web services description language)

A web service cannot be used if it cannot be found. The
client invoking the web service should know where the web
service actually resides.

Secondly, the client application needs to know what the web
service actually does, so that it can invoke the right web
service. This is done with the help of the WSDL, known as the
Web services description language. The WSDL file is again an
XML-based file which basically tells the client application what
the web service does. By using the WSDL document, the client
application would be able to understand where the web service
is located and how it can be utilized.

Web Service Example

An example of a WSDL file is given below.

<definitions>

 <message name="TutorialRequest">

 <part name="TutorialID" type="xsd:string"/>

 </message>

 <message name="TutorialResponse">

 <part name="TutorialName" type="xsd:string"/>

 </message>

 <portType name="Tutorial_PortType">

 <operation name="Tutorial">

 <input message="tns:TutorialRequest"/>

 <output message="tns:TutorialResponse"/>

 </operation>

 </portType>

 <binding name="Tutorial_Binding" type="tns:Tutorial_PortType">

 <soap:binding style="rpc"

 transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="Tutorial">

 <soap:operation soapAction="Tutorial"/>

 <input>

 <soap:body

 encodingStyle="http://schemas.xmlsoap.org/soap/encodi

ng/"

 namespace="urn:examples:Tutorialservice"

 use="encoded"/>

 </input>

 <output>

 <soap:body

 encodingStyle="http://schemas.xmlsoap.org/soap/encodi

ng/"

 namespace="urn:examples:Tutorialservice"

 use="encoded"/>

 </output>

 </operation>

 </binding>

</definitions>

(ii) Explain the steps for writing web service.

6.

Describe briefly about the elements of WSDL.

he important aspects to note about the above WSDL
declaration are as follows;

1. <message> - The message parameter in the WSDL
definition is used to define the different data elements for
each operation performed by the web service. So in the
example above, we have 2 messages which can be
exchanged between the web service and the client
application, one is the "TutorialRequest", and the other is
the "TutorialResponse" operation. The TutorialRequest
contains an element called "TutorialID" which is of the
type string. Similarly, the TutorialResponse operation
contains an element called "TutorialName" which is also
a type string.

2. <portType> - This actually describes the operation
which can be performed by the web service, which in our
case is called Tutorial. This operation can take 2
messages; one is an input message, and the other is the
output message.

3. <binding> - This element contains the protocol which is
used. So in our case, we are defining it to use http
(http://schemas.xmlsoap.org/soap/http). We also
specify other details for the body of the operation, like the

namespace and whether the message should be
encoded.

7.

(i) Summarize on the structure of SOAP.

SOAP (Simple Object Access Protocol)

SOAP is known as a transport-independent messaging
protocol. SOAP is based on transferring XML data as SOAP
Messages. Each message has something which is known as
an XML document. Only the structure of the XML document
follows a specific pattern, but not the content. The best part of
Web services and SOAP is that its all sent via HTTP, which is
the standard web protocol.

Here is what a SOAP message consists of

o Each SOAP document needs to have a root element
known as the <Envelope> element. The root element is
the first element in an XML document.

o The "envelope" is in turn divided into 2 parts. The first is
the header, and the next is the body.

o The header contains the routing data which is basically
the information which tells the XML document to which
client it needs to be sent to.

o The body will contain the actual message.

The diagram below shows a simple example of the
communication via SOAP.

(ii) Describe briefly about SOAP & HTTP.

8.

(i) Demonstrate the building blocks of SOAP.

XML Soap
 SOAP stands for Simple Object Access Protocol
 SOAP is an application communication protocol

 SOAP is a format for sending and receiving messages
 SOAP is platform independent

 SOAP is based on XML
 SOAP is a W3C recommendation

Why SOAP?

It is important for web applications to be able to communicate over the

Internet.

The best way to communicate between applications is over HTTP,

because HTTP is supported by all Internet browsers and servers. SOAP
was created to accomplish this.

SOAP provides a way to communicate between applications running on
different operating systems, with different technologies and

programming languages.

https://www.guru99.com/images/3-2016/032316_0646_Webservicea2.png

SOAP Building Blocks

A SOAP message is an ordinary XML document containing the following

elements:

 An Envelope element that identifies the XML document as a

SOAP message
 A Header element that contains header information

 A Body element that contains call and response information
 A Fault element containing errors and status information

Syntax Rules

Here are some important syntax rules:

 A SOAP message MUST be encoded using XML
 A SOAP message MUST use the SOAP Envelope namespace

 A SOAP message must NOT contain a DTD reference
 A SOAP message must NOT contain XML Processing Instructions

(ii) Classify the encoding of struct data and array.

SOAP - Encoding

SOAP includes a built-in set of rules for encoding data types. It enables the
SOAP message to indicate specific data types, such as integers, floats,
doubles, or arrays.

 SOAP data types are divided into two broad categories − scalar types and
compound types.

 Scalar types contain exactly one value such as a last name, price, or product
description.

 Compound types contain multiple values such as a purchase order or a list of
stock quotes.

 Compound types are further subdivided into arrays and structs.

Compound Types

SOAP arrays have a very specific set of rules, which require that you specify
both the element type and array size. SOAP also supports multidimensional
arrays, but not all SOAP implementations support multidimensional
functionality.

To create an array, you must specify it as an xsi:type of array. The array must
also include an arrayType attribute. This attribute is required to specify the
data type for the contained elements and the dimension(s) of the array.

For example, the following attribute specifies an array of 10 double values −

arrayType = "xsd:double[10]"

In contrast, the following attribute specifies a two-dimensional array of strings
−

arrayType = "xsd:string[5,5]"

Here is a sample SOAP response with an array of double values −

<?xml version = '1.0' encoding = 'UTF-8'?>

<SOAP-ENV:Envelope

 xmlns:SOAP-ENV = "http://www.w3.org/2001/12/soap-

envelope"

 xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"

 xmlns:xsd = "http://www.w3.org/2001/XMLSchema">

 <SOAP-ENV:Body>

 <ns1:getPriceListResponse

 xmlns:ns1 = "urn:examples:pricelistservice"

 SOAP-ENV:encodingStyle =

"http://www.w3.org/2001/12/soap-encoding">

 <return xmlns:ns2 =

"http://www.w3.org/2001/09/soap-encoding"

 xsi:type = "ns2:Array" ns2:arrayType =

"xsd:double[2]">

 <item xsi:type = "xsd:double">54.99</item>

 <item xsi:type = "xsd:double">19.99</item>

 </return>

 </ns1:getPriceListResponse>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

Structs contain multiple values, but each element is specified with a unique
accessor element. For example, consider an item within a product catalog. In
this case, the struct might contain a product SKU, product name, description,
and price. Here is how such a struct would be represented in a SOAP message
−

<?xml version = '1.0' encoding = 'UTF-8'?>

<SOAP-ENV:Envelope

 xmlns:SOAP-ENV = "http://www.w3.org/2001/12/soap-

envelope"

 xmlns:xsi = "http://www.w3.org/2001/XMLSchema-instance"

 xmlns:xsd = "http://www.w3.org/2001/XMLSchema">

 <SOAP-ENV:Body>

 <ns1:getProductResponse

 xmlns:ns1 = "urn:examples:productservice"

 SOAP-ENV:encodingStyle =

"http://www.w3.org/2001/12/soap-encoding">

 <return xmlns:ns2 = "urn:examples" xsi:type =

"ns2:product">

 <name xsi:type = "xsd:string">Red Hat

Linux</name>

 <price xsi:type = "xsd:double">54.99</price>

 <description xsi:type = "xsd:string">

 Red Hat Linux Operating System

 </description>

 <SKU xsi:type = "xsd:string">A358185</SKU>

 </return>

 </ns1:getProductResponse>

 </SOAP-ENV:Body>

</SOAP-ENV:Envelope>

9.

Analyze the various steps in database driven web service with some

example.

Overview of Database Web Services

Web services enable application-to-application interaction over the Web, regardless of platform,

language, or data formats. The key ingredients, including Extensible Markup Language (XML),

Simple Object Access Protocol (SOAP), Web Services Description Language (WSDL), and

Universal Description, Discovery, and Integration (UDDI), have been adopted across the entire

software industry. Web services usually refer to services implemented and deployed in middle-tier

application servers. However, in heterogeneous and disconnected environments, there is an

increasing need to access stored procedures, as well as data and metadata, through Web services

interfaces.

The Database Web services technology is a database approach to Web services. It works in the

following two directions:

 Accessing database resources as a Web service

 Consuming external Web services from the database

Oracle Database can access Web services through PL/SQL packages and Java classes deployed

within the database. Turning Oracle Database into a Web service provider leverages investment in

Java stored procedures, PL/SQL packages, predefined SQL queries, and data manipulation

language (DML). Conversely, consuming external Web services from the database, together with

integration with the SQL engine, enables Enterprise Information Integration.

Using Oracle Database as Web Services
Provider

Web Services use industry-standard mechanisms to provide easy access to remote content and

applications, regardless of the platform and location of the provider and implementation and data

format. Client applications can query and retrieve data from Oracle Database and call stored

procedures using standard Web service protocols. There is no dependency on Oracle-specific

database connectivity protocols. This approach is highly beneficial in heterogeneous, distributed,

and disconnected environments.

You can call into the database from a Web service, using the database as a service provider. This

enables you to leverage existing or new SQL, PL/SQL, Java stored procedures, or Java classes

within Oracle Database. You can access and manipulate database tables from a Web service

client.

10.

Illustrate on web services for writing web service client along with

the description of WSDL.

Creating a Web Service Client

Creating a web service client application always starts with an existing WSDL file.

Typically, you retrieve the WSDL directly from a web service provider using the wsimport tool.

The wsimport tool then generates the corresponding Java source code for the interface described by

the WSDL. The Java compiler, javac, is then called to compile the source into class files. The

programming code uses the generated classes to access the web service.

Creating a Client from WSDL

To create a client from WSDL, you must create the following files:

 Client Java File (fromwsdl)

 Client Configuration File (fromwsdl)

 build.xml

 build.properties

Client Java File (fromwsdl)

The client Java file defines the functionality of the web service client. The following code shows

the AddNumbersClient.java file that is provided in the sample.

package fromjava.client;

import com.sun.xml.ws.Closeable;

import java.rmi.RemoteException;

public class AddNumbersClient {

 public static void main (String[] args) {

 AddNumbersImpl port = null;

 try {

 port = new

AddNumbersImplService().getAddNumbersImplPort();

 int number1 = 10;

 int number2 = 20;

 System.out.printf ("Invoking addNumbers(%d, %d)\n",

 number1, number2);

 int result = port.addNumbers (number1, number2);

 System.out.printf (

 "The result of adding %d and %d is %d.\n\n",

 number1, number2, result);

 number1 = -10;

https://docs.oracle.com/cd/E17802_01/webservices/webservices/reference/tutorials/wsit/doc/Examples_glassfish6.html#wp108032
https://docs.oracle.com/cd/E17802_01/webservices/webservices/reference/tutorials/wsit/doc/Examples_glassfish6.html#wp107991

 System.out.printf ("Invoking addNumbers(%d, %d)\n",

 number1, number2);

 result = port.addNumbers (number1, number2);

 System.out.printf (

 "The result of adding %d and %d is %d.\n",

 number1, number2, result);

 } catch (AddNumbersException_Exception ex) {

 System.out.printf (

 "Caught AddNumbersException_Exception: %s\n",

 ex.getFaultInfo ().getDetail ());

 } finally {

 ((Closeable)port).close();

 }

 }

}

This file specifies two positive integers that are to be added by the web service, passes the integers to

the web service and gets the results from the web service via the port.addNumbers method, and

prints the results to the screen. It then specifies a negative number to be added, gets the results (which
should be an exception), and prints the results (the exception) to the screen.

Client Configuration File (fromwsdl)

This is a sample custom-client.xml file. The wsdlLocation, package name,

and jaxb:package name xml tags are unique to each client and are highlighted in bold text

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

<bindings

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:jaxb="http://java.sun.com/xml/ns/jaxb"

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 wsdlLocation="http://localhost:8080/wsit-enabled-fromwsdl/

 addnumbers?wsdl"

 xmlns="http://java.sun.com/xml/ns/jaxws">

 <bindings node="ns1:definitions"

 xmlns:ns1="http://schemas.xmlsoap.org/wsdl/">

 <package name="fromwsdl.client"/>

 </bindings>

 <bindings node="ns1:definitions/ns1:types/xsd:schema

 [@targetNamespace='http://duke.org']"

 xmlns:xs="http://www.w3.org/2001/XMLSchema"

 xmlns:ns1="http://schemas.xmlsoap.org/wsdl/">

 <jaxb:schemaBindings>

 <jaxb:package name="fromwsdl.client"/>

 </jaxb:schemaBindings>

 </bindings>

</bindings>

11.

(i) List out the installation steps of JWSDP.

JWSDP
1. Install JDK 6.0 (i.e., JDK 1.6.0)

 Set up the following environment variables:

 JAVA_HOME C:\Program Files\Java\jdk1.6.0_07

 Add the following path:

 C:\Program Files\Java\jdk1.6.0_07\bin

http://www.cis.umassd.edu/~hxu/Projects/UMD/WebServices/download/jdk-6u7-windows-i586-p.exe

2. Install JWSDP 2.0 & Tomcat 5.0 for JWSDP (based upon Tomcat 5.0.19

that implements

 the Java Server Pages 2.0 and Java Servlet 2.4 specifications)

 Set up the following environment variables:

 JWSDP_HOME C:\Sun\jwsdp-2.0

 ANT_HOME C:\Sun\jwsdp-2.0\apache-ant

 Add the following path:

 C:\Sun\jwsdp-2.0\jwsdp-shared\bin;C:\Sun\jwsdp-2.0\apache-ant\bin

3. Copy examples.zip into C:\ and extract here

4. Copy lib.zip into C:\Sun\jwsdp-2.0\server directory and extract

here

 Delete the file "lib.zip"

5. Replace saaj-impl.jar file at the following directories by saaj-

impl-1.3.jar.

 Rename it to saaj-impl.jar.

 C:\Sun\jwsdp-2.0\saaj\lib

 C:\Sun\tomcat50-jwsdp\saaj\lib

6. Modify C:\examples\common\build.properties for the first four

lines as follows:

 tutorial.home=C:

 tutorial.install=${tutorial.home}

 username=hxu

 password=12345

 where "hxu" and "12345" are the username and password for the

Tomcat server.

7. Build server:

 cd C:\examples\jaxrpc\helloservice

 ant build

 Start Tomcat from JWSDP 2.0

 Deploy server:

 ant deploy

 Note: If application already exists at path /hello-jaxrpc, you

should use the

 command "ant undeploy" to undeploy the web service first.

 Verify the deployment:

 To verify that the service has been successfully deployed, open a

browser window

 and specify the service endpoint's URL as follows:

 http://localhost:8080/hello-jaxrpc/hello?WSDL

 You should get the following display.

http://www.cis.umassd.edu/~hxu/Projects/UMD/WebServices/download/JWSDP2.0/jwsdp-2_0-windows-i586.exe
http://www.cis.umassd.edu/~hxu/Projects/UMD/WebServices/download/tomcat50-jwsdp.zip
http://www.cis.umassd.edu/~hxu/Projects/UMD/WebServices/examples.zip
http://www.cis.umassd.edu/~hxu/Projects/UMD/WebServices/lib.zip
http://www.cis.umassd.edu/~hxu/Projects/UMD/WebServices/saaj-impl-1.3.jar
http://www.cis.umassd.edu/~hxu/Projects/UMD/WebServices/saaj-impl-1.3.jar
http://localhost:8080/hello-jaxrpc/hello?WSDL

8. Build client:

 cd C:\examples\jaxrpc\dynamicproxy

 ant build

 Run client:

 ant run

(ii) Describe on Simple Object Access Protocol.

XML Soap

 SOAP stands for Simple Object Access Protocol
 SOAP is an application communication protocol

 SOAP is a format for sending and receiving messages
 SOAP is platform independent

 SOAP is based on XML
 SOAP is a W3C recommendation

Why SOAP?

It is important for web applications to be able to communicate over the

Internet.

The best way to communicate between applications is over HTTP,

because HTTP is supported by all Internet browsers and servers. SOAP
was created to accomplish this.

SOAP provides a way to communicate between applications running on
different operating systems, with different technologies and

programming languages.

SOAP Building Blocks

A SOAP message is an ordinary XML document containing the following

elements:

 An Envelope element that identifies the XML document as a

SOAP message
 A Header element that contains header information

 A Body element that contains call and response information
 A Fault element containing errors and status information

Syntax Rules

Here are some important syntax rules:

 A SOAP message MUST be encoded using XML
 A SOAP message MUST use the SOAP Envelope namespace

 A SOAP message must NOT contain a DTD reference
 A SOAP message must NOT contain XML Processing Instructions

12. (i) Discuss the XMLHttpRequest Object with example.

AJAX - The XMLHttpRequest Object

The keystone of AJAX is the XMLHttpRequest object.

The XMLHttpRequest Object

All modern browsers support the XMLHttpRequest object.

The XMLHttpRequest object can be used to exchange data with a

server behind the scenes. This means that it is possible to update
parts of a web page, without reloading the whole page.

Create an XMLHttpRequest Object

All modern browsers (Chrome, Firefox, IE7+, Edge, Safari Opera) have

a built-in XMLHttpRequest object.

Syntax for creating an XMLHttpRequest object:

variable = new XMLHttpRequest();

Example

var xhttp = new XMLHttpRequest();

Access Across Domains

For security reasons, modern browsers do not allow access across

domains.

This means that both the web page and the XML file it tries to load,
must be located on the same server.

The examples on W3Schools all open XML files located on the
W3Schools domain.

If you want to use the example above on one of your own web pages,
the XML files you load must be located on your own server.

Example

if (window.XMLHttpRequest) {
 // code for modern browsers
 xmlhttp = new XMLHttpRequest();
 } else {
 // code for old IE browsers

 xmlhttp = new ActiveXObject("Microsoft.XMLHTTP");
}

(ii) Describe about Java web service basics.

JAX-WS Example RPC Style

Creating JAX-WS example is a easy task because it requires no extra
configuration settings.

JAX-WS API is inbuilt in JDK, so you don't need to load any extra jar file for it.
Let's see a simple example of JAX-WS example in RPC style.

There are created 4 files for hello world JAX-WS example:

1. HelloWorld.java

2. HelloWorldImpl.java

3. Publisher.java

4. HelloWorldClient.java

The first 3 files are created for server side and 1 application for client side.

JAX-WS Server Code

File: HelloWorld.java

1. package com.javatpoint;

2. import javax.jws.WebMethod;

3. import javax.jws.WebService;

4. import javax.jws.soap.SOAPBinding;

5. import javax.jws.soap.SOAPBinding.Style;

6. //Service Endpoint Interface

7. @WebService

8. @SOAPBinding(style = Style.RPC)

9. public interface HelloWorld{

10. @WebMethod String getHelloWorldAsString(String name);

11. }

File: HelloWorldImpl.java

1. package com.javatpoint;

2. import javax.jws.WebService;

3. //Service Implementation

4. @WebService(endpointInterface = "com.javatpoint.HelloWorld")

5. public class HelloWorldImpl implements HelloWorld{

6. @Override

7. public String getHelloWorldAsString(String name) {

8. return "Hello World JAX-WS " + name;

9. }

10. }

File: Publisher.java

1. package com.javatpoint;

2. import javax.xml.ws.Endpoint;

3. //Endpoint publisher

4. public class HelloWorldPublisher{

5. public static void main(String[] args) {

6. Endpoint.publish("http://localhost:7779/ws/hello", new HelloWorldIm

pl());

7. }

8. }

How to view generated WSDL

After running the publisher code, you can see the generated WSDL file by visiting

the URL:

1. http://localhost:7779/ws/hello?wsdl

JAX-WS Client Code

File: HelloWorldClient.java

1. package com.javatpoint;

2. import java.net.URL;

3. import javax.xml.namespace.QName;

4. import javax.xml.ws.Service;

5. public class HelloWorldClient{

6. public static void main(String[] args) throws Exception {

7. URL url = new URL("http://localhost:7779/ws/hello?wsdl");

8.

9. //1st argument service URI, refer to wsdl document above

10. //2nd argument is service name, refer to wsdl document above

11. QName qname = new QName("http://javatpoint.com/", "HelloWorld

ImplService");

12. Service service = Service.create(url, qname);

13. HelloWorld hello = service.getPort(HelloWorld.class);

14. System.out.println(hello.getHelloWorldAsString("javatpoint rpc"));

15. }

16. }

Output:

Hello World JAX-WS javatpoint rpc

13.

(i) Explain in detail about SOAP encoding.

• For transfer between client and server in a SOAP message, we encode them in

XML.

SOAP Encoding is an extension of the SOAP framework specification that defines how a
data value should be encoded in an XML format. SOAP Data Model is defined as an
adjunct in SOAP 1.2 specification.

SOAP encoding offers the following rules to convert any data value defined in SOAP
data model into XML format. Converting a data value into XML format is called
serialization or encoding.

Rule 1. A simple value node with a labeled inbound edge will be serialized into a single
XML element with the edge's label as the element's name and node value as the
element's text content.

Rule 2. When serializing a node into an XML element, an "xsi:type" attribute can be
added to specify the value type of this note. For more information on "xsi:type", see the
other sections in this book.

Rule 3. A compound value node with labeled outbound edges, a data structure, will be
serialized into a single XML element with child elements. One outbound edge will be
serialized into one child element with element's name equal to the edge's label. The
order of child elements is not significant.

Rule 4. A compound value node with non-labeled outbound edges, a data array, will be
serialized into a single XML element with child elements. One outbound edge will be
serialized into one child element with element's name equal to any label as long as it's
the same for all child elements. The order of child elements signifies the position values
of outbound edges.

Rule 5. When serializing an array, an "enc:itemType" attribute can be added to specify
the value type of its sub nodes, and an "enc:arraySize" attribute can be added to specify
the number of values in the array.

(ii) Point out the RPC representation model.

What Is JAX-RPC?

JAX-RPC stands for Java API for XML-based RPC. It's an API for building

Web services and clients that used remote procedure calls (RPC) and XML.

Often used in a distributed client/server model, an RPC mechanism enables

clients to execute procedures on other systems.

In JAX-RPC, a remote procedure call is represented by an XML-based

protocol such as SOAP. The SOAP specification defines envelope structure,

encoding rules, and a convention for representing remote procedure calls

and responses. These calls and responses are transmitted as SOAP messages

over HTTP. In this release, JAX-RPC relies on SOAP 1.1 and HTTP 1.1.

Although JAX-RPC relies on complex protocols, the API hides this

complexity from the application developer. On the server side, the

developer specifies the remote procedures by defining methods in an

interface written in the Java programming language. The developer also

codes one or more classes that implement those methods. Client programs

are also easy to code. A client creates a proxy, a local object representing

the service, and then simply invokes methods on the proxy.

With JAX-RPC, clients and Web services have a big advantage--the

platform independence of the Java programming language. In addition,

JAX-RPC is not restrictive: a JAX-RPC client can access a Web service that

is not running on the Java platform and vice versa. This flexibility is

possible because JAX-RPC uses technologies defined by the World Wide

Web Consortium (W3C): HTTP, SOAP, and the Web Service Description

Language (WSDL). WSDL specifies an XML format for describing a

service as a set of endpoints operating on messages.

14.

Explain the structure of a WSDL document, its elements and their

purposes with appropriate examples.

A WSDL document defines services as collections of network endpoints,

or ports. In WSDL, the abstract definition of endpoints and messages is

separated from their concrete network deployment or data format bindings.

This allows the reuse of abstract definitions: messages, which are abstract

descriptions of the data being exchanged, and port types which are abstract

collections of operations. The concrete protocol and data format

specifications for a particular port type constitutes a reusable binding. A

port is defined by associating a network address with a reusable binding,

and a collection of ports define a service. Hence, a WSDL document uses

the following elements in the definition of network services:

 Types– a container for data type definitions using some type system

(such as XSD).

 Message– an abstract, typed definition of the data being

communicated.

 Operation– an abstract description of an action supported by the

service.

 Port Type–an abstract set of operations supported by one or more

endpoints.

 Binding– a concrete protocol and data format specification for a

particular port type.

 Port– a single endpoint defined as a combination of a binding and a

network address.

 Service– a collection of related endpoints.

In addition, WSDL defines a common binding mechanism. This is used to

attach a specific protocol or data format or structure to an abstract message,

operation, or endpoint. It allows the reuse of abstract definitions.

WSDL Document Example

The following example shows the WSDL definition of a simple service

providing stock quotes. The service supports a single operation called

GetLastTradePrice, which is deployed using the SOAP 1.1 protocol over

HTTP. The request takes a ticker symbol of type string, and returns the price

as a float. A detailed description of the elements used in this definition can

be found in Section 2 (core language) and Section 3 (SOAP binding).

This example uses a fixed XML format instead of the SOAP encoding (for

an example using the SOAP encoding, see Example 4).

Example 1 SOAP 1.1 Request/Response via HTTP

<?xml version="1.0"?>

<definitions name="StockQuote"

targetNamespace="http://example.com/stockquote.wsdl"

 xmlns:tns="http://example.com/stockquote.wsdl"

 xmlns:xsd1="http://example.com/stockquote.xsd"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns="http://schemas.xmlsoap.org/wsdl/">

 <types>

 <schema targetNamespace="http://example.com/stockquote.xsd"

 xmlns="http://www.w3.org/2000/10/XMLSchema">

 <element name="TradePriceRequest">

 <complexType>

 <all>

 <element name="tickerSymbol" type="string"/>

 </all>

 </complexType>

 </element>

 <element name="TradePrice">

 <complexType>

 <all>

 <element name="price" type="float"/>

https://www.w3.org/TR/wsdl.html#_rpcexample

 </all>

 </complexType>

 </element>

 </schema>

 </types>

 <message name="GetLastTradePriceInput">

 <part name="body" element="xsd1:TradePriceRequest"/>

 </message>

 <message name="GetLastTradePriceOutput">

 <part name="body" element="xsd1:TradePrice"/>

 </message>

 <portType name="StockQuotePortType">

 <operation name="GetLastTradePrice">

 <input message="tns:GetLastTradePriceInput"/>

 <output message="tns:GetLastTradePriceOutput"/>

 </operation>

 </portType>

 <binding name="StockQuoteSoapBinding" type="tns:StockQuotePortType">

 <soap:binding style="document" transport="http://schemas.xmlsoap.org/soap/http"/>

 <operation name="GetLastTradePrice">

 <soap:operation soapAction="http://example.com/GetLastTradePrice"/>

 <input>

 <soap:body use="literal"/>

 </input>

 <output>

 <soap:body use="literal"/>

 </output>

 </operation>

 </binding>

 <service name="StockQuoteService">

 <documentation>My first service</documentation>

 <port name="StockQuotePort" binding="tns:StockQuoteBinding">

 <soap:address location="http://example.com/stockquote"/>

 </port>

 </service>

</definitions>

PAR

T – C

Q.No Questions

1.

Create an XML HttpRequest to retrieve data from an XML file and

display the data in an HTML table. The data to be retrieved is a

collection of stationary items stored in an XML file.

The XML Document Used

INPUT: XML file called "cd_catalog.xml".

https://www.w3schools.com/xml/cd_catalog.xml

Display XML Data in an HTML Table

This example loops through each <CD> element, and displays the

values of the <ARTIST> and the <TITLE> elements in an HTML table:

Example

<html>

<head>

<style>

table, th, td {

 border: 1px solid black;

 border-collapse:collapse;

}

th, td {

 padding: 5px;

}

</style>

</head>

<body>

<table id="demo"></table>

<script>

function loadXMLDoc() {

 var xmlhttp = new XMLHttpRequest();

 xmlhttp.onreadystatechange = function() {

 if (this.readyState == 4 && this.status == 200) {

 myFunction(this);

 }

 };

 xmlhttp.open("GET", "cd_catalog.xml", true);

 xmlhttp.send();

}

function myFunction(xml) {

 var i;

 var xmlDoc = xml.responseXML;

 var table="<tr><th>Artist</th><th>Title</th></tr>";

 var x = xmlDoc.getElementsByTagName("CD");

 for (i = 0; i <x.length; i++) {

 table += "<tr><td>" +

 x[i].getElementsByTagName("ARTIST")[0].childNodes[0].nodeValu

e +

 "</td><td>" +

 x[i].getElementsByTagName("TITLE")[0].childNodes[0].nodeValue

 +

 "</td></tr>";

 }

 document.getElementById("demo").innerHTML = table;

}

</script>

</body>

</html>

OUTPUT

Artist Title

Bob Dylan Empire Burlesque

Bonnie Tyler Hide your heart

Dolly Parton Greatest Hits

Gary Moore Still got the blues

Eros Ramazzotti Eros

Bee Gees One night only

Dr.Hook Sylvias Mother

2.

Summarize Ajax Client server architecture in detail.

What is AJAX?

AJAX = Asynchronous JavaScript And XML.

AJAX is not a programming language.

AJAX just uses a combination of:

 A browser built-in XMLHttpRequest object (to request data from a web server)

 JavaScript and HTML DOM (to display or use the data)

AJAX is a misleading name. AJAX applications might use XML to transport data, but it

is equally common to transport data as plain text or JSON text.

AJAX allows web pages to be updated asynchronously by exchanging data with a web

server behind the scenes. This means that it is possible to update parts of a web page,

without reloading the whole page.

How AJAX Works

 1. An event occurs in a web page (the page is loaded, a button is clicked)

 2. An XMLHttpRequest object is created by JavaScript

 3. The XMLHttpRequest object sends a request to a web server

 4. The server processes the request

 5. The server sends a response back to the web page

 6. The response is read by JavaScript

 7. Proper action (like page update) is performed by JavaScript

3.

Give the basic structure of a WSDL and show how they are used to

create, publish, test and describe web services.

Structure of a WSDL Document

Web Services Description Language (WSDL) is an XML grammar for
describing network services as collections of communication
endpoints capable of exchanging messages. The diagram below
illustrates the elements that are present in a WSDL document, and
indicates their relationships. To see an example of how this is
implemented in a WSDL document, see Example of a WSDL
Document .

https://download.oracle.com/otn_hosted_doc/jdeveloper/1012/web_services/ws_wsdlexample.html
https://download.oracle.com/otn_hosted_doc/jdeveloper/1012/web_services/ws_wsdlexample.html

WSDL Document Elements

A WSDL document has a definitions element that contains the other
five elements, types, message, portType, binding and service. The
following sections describe the features of the generated client code.

WSDL supports the XML Schemas specification (XSD) as its type
system.

definitions

Contains the definition of one or more services. JDeveloper
generates the following attribute declarations for this section:

 name is optional.
 targetNamespace is the logical namespace for information

about this service. WSDL documents can import other
WSDL documents, and setting targetNamespace to a
unique value ensures that the namespaces do not clash.

 xmlns is the default namespace of the WSDL document,
and it is set to http://schemas.xmlsoap.org/wsdl/.

 All the WSDL elements, such
as <definitions>, <types> and <message> reside in this
namespace.

 xmlns:xsd and xmlns:soap are standard namespace
definitions that are used for specifying SOAP-specific
information as well as data types.

 xmlns:tns stands for this namespace.
 xmlns:ns1 is set to the value of the schema targetNamespace,

in the <types> section.

4.

Compare and contrast the additional web application architecture

and AJAX Based web application architecture.

Traditional Web Applications vs. Ajax Applications

The following highlights the key differences between traditional web

applications and Ajax-based web applications.

Traditional Web Applications

 Figure 15.1 presents the typical interactions between the client and

the server in a tradi-tional web application, such as one that uses a

user registration form.

 First, the user fills in the form’s fields, then submits the form (Fig.

15.1, Step 1). The browser generates a re-quest to the server, which

receives the request and processes it (Step 2).

 The server generates and sends a response containing the exact page

that the browser will render (Step 3), which causes the browser to

load the new page (Step 4) and temporarily makes the browser win-

dow blank. Note that the client waits for the server to respond

and reloads the entire page with the data from the response (Step 4).

 While such a synchronous request is being processed on the server,

the user cannot interact with the client web page.

 Frequent long periods of waiting, due perhaps to Internet

congestion, have led some users to refer to the World Wide Web as

the “World Wide Wait.”

 If the user interacts with and submits an-other form, the process

begins again (Steps 5–8).

This model was originally designed for a web of hypertext

documents—what some people call the “brochure web.”

 As the web evolved into a full-scale applications platform, the model

shown in Fig. 15.1 yielded “choppy” application performance.

Every full-page refresh required users to re-establish their

understanding of the full-page contents.

Users began to demand a model that would yield the responsive feel of

desktop applications.

Ajax Web Applications

 Ajax applications add a layer between the client and the server to

manage communication between the two (Fig. 15.2). When the user

interacts with the page, the client creates an XMLHttpRequest object

to manage a request (Step 1).

 The XMLHttpRequest object sends the request to the server (Step 2)

and awaits the response.

 The requests are asynchronous, so the user can continue interacting

with the application on the client-side while the server processes the

earlier request concurrently. Other user interactions could result in

addition-al requests to the server (Steps 3 and 4).

 Once the server responds to the original request (Step 5),

the XMLHttpRequest object that issued the request calls a client-side

function to process the data returned by the server.

 This function—known as a callback function— uses partial

page updates (Step 6) to display the data in the existing web

page without re-loading the entire page. At

the same time, the server may be responding to the second re-quest

(Step 7) and the client-side may be starting to do another partial page

update (Step 8).

 The callback function updates only a designated part of the page.

 Such partial page up-dates help make web applications more

responsive, making them feel more like desktop applications.

 The web application does not load a new page while the user

interacts with it.

